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Assessing Submarine Sonar Performance 
Using Statistically Designed Tests
George M. Khoury, Justace R. Clutter, and V. Bram Lillard

THE PROBLEM
Historical at-sea methods for determining Anti-Submarine 
Warfare performance of the Navy’s submarine sonar system 
are unable to characterize performance across a range of 
operational conditions and yield statistically significant results.

The Acoustic Rapid Commercial-off-the-Shelf Insertion 
(A-RCI) is the Navy’s newest submarine sonar processing 
system. It provides hardware and software to process data 
from the submarine’s sonar arrays and display those data to 
the sonar operators. A-RCI uses a spiral development model 
to procure new, commercial off-the-shelf computing hardware 
every two years. Buying new computing hardware over time 
capitalizes on the decreasing cost of processing power and 
ensures that an acceptable balance between obsolescent and 
modern hardware is maintained. To take advantage of the ever-
improving processing power from hardware upgrades, a new 
version of A-RCI software, denoted an Advanced Processing 
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Figure 1. Four A-RCI Sonar Consoles aboard a Submarine
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Build (APB), is developed every 
other year. Each APB incorporates 
feedback from Fleet users, fixes bugs 
discovered in previous versions, 
and adds new algorithms developed 
by industry and academia.

The primary role for A-RCI 
is to manage the large amount 
of information coming from the 
sonar arrays and display it to the 
operator so that he can make sense 
of it. To understand the scale of the 
operator’s problem, consider that 
a Virginia-class submarine uses six 
sonar arrays for submarine searches, 
each providing information on all 
bearings, multiple elevation angles, 
and a range of frequencies. The sonar 
operator must monitor this multi-
dimensional search space constantly, 
and it is impossible to display all of 
the information simultaneously. A-RCI 
provides displays and automation 
to help the operators manage this 
search space and help them detect 
contacts as quickly as possible.

The Navy’s primary metric with 
which to evaluate A-RCI performance 
in the Anti-Submarine Warfare (ASW) 
mission is denoted ΔT. It is defined 
as the median time it takes for an 
operator to detect a submarine 
contact once that submarine’s signal 
becomes available for display on 
sonar system screens. Although ΔT 
is not a measure of the submarine’s 
overall ASW capability, it does quantify 
A-RCI’s role in the detection process. 
The ongoing goal of A-RCI processing 
improvements is to minimize the time 
needed to find target signatures.

At-sea tests of A-RCI consist of 
two submarines searching for each 
other in a specified area. Although this 
technique provides an operationally 
realistic environment, it suffers from 
several drawbacks. Most notably, 
at-sea testing has never been able 
to show a statistically significant 
improvement in A-RCI performance 
over the course of a decade, during 
which time many software and 
hardware upgrades were fielded to 
the Fleet. A comparison has been 
impossible because two software 
versions are never compared in the 
same at-sea event, and the results 
of a test can depend on target and 
environmental characteristics that are 
impossible to control. Additionally, 
at-sea testing uses a single target and 
a single operational environment, 
which limits the assessment of 
performance of the new APB to only 
a small portion of the operational 
envelope. Finally, the cost and 
variability of at-sea testing have 
resulted in poor quantification of APB 
performance in the conditions tested. 

To address the shortcomings of 
A-RCI at-sea testing, IDA proposed 
augmenting the at-sea operational 
test events with so-called Operator-
In-the-Loop (OIL) laboratory tests. 
In an OIL test, a Fleet operator 
sits at a laboratory mockup of the 
A-RCI sonar system. The laboratory 
then plays back a recorded at-sea 
encounter between two submarines, 
and the operator declares when he 
has detected the threat submarine.1 
The laboratory allows the same 
encounter to be replayed on different 

1 U.S. submarines are capable of recording raw sonar data, that is, the voltage recorded  
by the individual hydrophones that make up the sonar arrays. Because these raw data are 
recorded before they are processed by A-RCI, it is possible to process the recorded data  
on any version of A-RCI.
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versions of A-RCI, which perfectly 
controls for environmental and 
target variability; the only difference 
between the two presentations is the 
software used to process the data. 
The primary limitation of the OIL 
testing is that it only allows for a 
single array to be processed at one 
time. Therefore, the sonar array to be 
processed needs to be a controlled 
test factor, whereas in real operations 
all arrays operate simultaneously.

For several years, the Navy has 
used a similar laboratory test method 
to compare new versions of A-RCI 
to old versions, but typically used 
only a few submarine encounters for 
each comparison, and published the 
results long after the software was 
fielded. As part of our support to 
DOT&E, IDA proposed expanding the 
scope of such tests to include a wider 
variety of test conditions, as shown 

in Table 1, and to employ Design 
of Experiments methodologies to 
generate a more robust test that would 
characterize performance across 
a range of operational conditions. 
The primary goal of the test was to 
compare the latest version of the 
sonar system, denoted APB-11, with 
the previous version, APB-09. To 
characterize the systems, the test 
used operators of varying proficiency 
and controlled for characteristics of 
the target and the array being used. 

FACTOR LEVELS 
HYPOTHESIZED EFFECT

IDA developed a 120-run, 
D-optimal, split-plot test design, with 
the distribution of runs as shown in 
Figure 2. A “run” consists of a single 
operator viewing a single recorded 
encounter, and a “Null” run is one 
in which no target is present. The 

Table 1. Factors and Levels Used in the OIL Testing Analysis

Factor Levels Hypothesized Effect

Target Type SSN, SSK

SSNs and SSKs exhibit different acoustic 
signatures. SSNs typically have more discrete 
tonal information because of the machinery 
associated with the nuclear reactor.

Array Type A, B
Array type A typically detects targets 
at longer ranges, which would be 
expected to generate larger ΔTs.

Target Noise Loud, Quiet

Loud targets are detected at longer ranges, 
which could lead to longer ΔTs. Conversely, 
loud targets typically have more discrete 
tonal information and are easier to identify, 
which could result in shorter ΔTs.

APB Version APB-09, APB-11
The primary goal of the test was to compare  
the latest version of the sonar system,  
APB-11, with the previous version, APB-09.

Operator 
Proficiency

1 to 20

More proficient operators will detect a submarine 
more quickly. The numeric scale was developed by 
the Naval Undersea Warfare Center and is based 
on an operator’s experience with the A-RCI system.
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Figure 2. OIL Test Design Matrix
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split-plot structure was used to limit 
the number of changes between the 
APB versions, as each change of APB 
required approximately 12 hours. A 
considerable amount of replication 
was built into the design to account 
for the fact that operator proficiency 
was not explicitly controlled. Instead, 
operators were chosen at random, 

and their proficiency was recorded 
during the events, which ensured a 
balanced distribution of proficiencies. 
Each operator reviewed up to six 
tapes, including a blank tape to 
check for false alarm rate. Finally, 
the Navy desired to focus the testing 
on APB-11, which resulted in the 
asymmetric test design shown; while 
this was not optimal for determining 
whether a significant APB difference 
existed, it provided a more precise 
understanding of performance for 
APB-11 (tighter confidence intervals).

TEST RESULTS
Figure 3 shows the raw results 

of the test. Each panel shows the 
results for a recorded encounter, 
with APB-09 results on the left and 
APB-11 results on the right. The blue 
dots are detection times; the red dots 
indicate runs in which the operator 
never detected the target before the 

Each panel (Cut 1, Cut 2, ...) shows the results for a single recording. Blue points indicate detection times (arbitrary 
units). Red points indicate runs in which the operator did not detect the target; the time in these cases is the length 
of the recording. 

Figure 3. Raw Results from A-RCI OIL Testing 
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recording finished. The location of 
the red dot indicates how long the 
target was on tape and not detected. 

The advantage of examining the 
results by recording is that recordings 
control all aspects of the encounter; 
the environment and target are exactly 
the same for each playback, so any 
difference in performance is due to 
either operator proficiency or the 
capability of the processing system. 
Since the test was well balanced in 
terms of operator proficiency, any 
observed differences are most likely 
due to the processing system. In 
general, APB-11 exhibited improved 
performance in almost all of the 
recorded encounters; in each panel, 
the dots are generally lower for  
APB-11 than they are for APB-09, 
reflecting shorter times to detect 
threat submarines. Therefore, even 
without statistical analysis, APB-
11 appears to be an improvement 
over APB-09. Such a limited analysis 
does not, however, make use of 
all the available information; APB-
11 appears to be better, but the 
improvement varies with recording 
and it is unclear why. The test 
was designed to determine which 
of the controlled factors affect 
A-RCI performance, and for that a 
statistical analysis is necessary. 

We performed a regression 
analysis to better understand how 
the controlled factors affected A-RCI 
performance. Our analysis accounts 
for missed detections by treating 
them as censored data points; in 
these cases, we assumed that the 
operator would have detected the 
contact if given enough time, so 
the full recorded length of time 
the contact was on the display is 

used as a lower bound estimate for 
the ΔT. We assumed that the data 
followed a lognormal distribution, in 
which the probability of observing 
a detection time x is the following:

Here, μ is related to the median 
of the distribution, and σ is a measure 
of its spread. Making this assumption 
allowed us to incorporate the 
missed detections using standard 
censored data analysis techniques. 

Although there is no a priori 
reason why the data should follow 
a lognormal distribution, our initial 
assumption was well supported 
by the data. Figure 4 shows the 
empirical cumulative distribution 
function of the data, along with a 
lognormal fit in red, the confidence 
region on the lognormal fit in pink, 

1 -

Red line shows a lognormal fit. Pink region shows the 
80% confidence region on the lognormal fit. Blue lines 
indicate the 80% confidence region on a non-parametric 
fit to the distribution. The data are well described by a 
lognormal distribution.

Figure 4. Empirical Cumulative 
Distribution of the OIL Data 
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and the confidence region of a non-
parametric fit in blue lines. The 
data appear to be well described 
by a lognormal distribution.

Next, we assigned each 
recording to the factors listed 
in Table 1, and then fit the data 
according to the following model:

x ~ lognormal(μ,σ)

σ = constant

μ = β0 + β1 OP + β2 APB+ β3 Target + 
β4 Noise + β5 Array + β6 Target * Noise 
+ β7 Target * Array+ β8 Noise * Array + 

β9 Target * Noise * Array

That is, we assumed that the 
median detection time depends on the 
factors listed in Table 1, along with 
second and third order interactions, 
and that the σ parameter was constant. 
In fact, we examined many possible 
models, including those with variable 
σ, but this model resulted in the 
lowest Akaike’s Information Criterion 
(AIC), a metric of model desirability. 
Table 2 shows the results of the 
final fit and describes the qualitative 
behavior of the coefficients. All of 
the first-order effects were highly 
significant. Notably, APB-11 performed 
significantly better than APB-09, 
holding all other effects equal – and 
the magnitude of the effect was 

Table 2. Results of the Model Fit to the Data 

Term Value† Description of the Effect

β1 (Operator 
experience level)

-0.074 ± 0.041

Increased operator proficiency results 
in shorter detection times. An increase 
in proficiency of one unit reduces 
median detection time by 7 percent.

β2 (APB) 0.307 ± 0.129
Detection time is shorter for 
APB-11, by 46 percent.#

β3 (Target) 0.359 ± 0.126 Detection time is shorter for SSN targets.

β4 (Noise) -0.324 ± 0.125 Detection time is shorter for loud targets.

β5 (Array) 0.347 ± 0.125
Detection time is shorter 
for the Type B array.

β6 (Target*Noise) 0.186 ± 0.126
Additional model terms added to 
improve predictions. The third-order 
interaction is marginally significant, 
so all second order interactions nested 
within the third order interaction were 
retained to preserve model hierarchy.

β7 (Target*Array) 0.011 ± 0.125

β8 (Noise*Array) 0.021 ± 0.126

β9 (Target*Noise*Array) -0.180 ± 0.125

† Confidence interval is an 80% Wald interval 
# APB-11 Provides a Statistically Significant Improvement.
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substantial, as APB-11 detection times 
were 46 percent shorter than APB-11 
times. Also, APB had no interaction 
with the other factors, which 
means APB-11 produced the same 
improvement regardless of the other 
factors. It did not matter whether the 
target was loud or quiet, SSN or SSK; 
switching from APB-09 to APB-11 
reduced the median detection time 
by approximately 46 percent. This 
was the first time operational testing 
of A-RCI had shown a statistically 
significant improvement in an APB.

Figure 5 shows the results of 
the model fit (blue dots, with 80% 
confidence intervals shown as vertical 
lines), along with the actual median 
detection times in each group (black) 
and the raw detection times (light 
blue and red, as before). The model 
predictions generally agree with the 
median in each bin, indicating that 
our relatively simple model provides a 

good fit to the data. There is, however, 
notable disagreement between the 
data median and the model prediction 
for one bin: quiet SSK targets with 
array type B in APB-09. The difference 
is due to sparse data, rather than 
a poorly fitting model. The data 
median in this case is based on only 
three data points and is therefore 
highly variable, making it a poor 
estimator of the true performance 
in that bin. We believe the model 
estimate predicts the performance 
that would be observed if additional 
runs were conducted with APB-09.

Our analysis provides several 
benefits over the less sophisticated 
analysis based solely on individual 
recordings. First, differences in 
performance are now attributable to 
operationally relevant factors, such as 
target type or array type. In contrast 
to the naïve analysis by recording, our 
statistical analysis shows that APB-11 
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The model fits the data well and indicates that APB-11 outperforms APB-09 in all conditions.  Data medians were 
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every bin whereas traditional data analysis methods might not be able to provide a robust estimate.

Figure 5. Model Predictions (Blue), along with the Median Detection Time Observed in Each Bin
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outperforms APB-09 by 46 percent on 
average across all conditions. Second, 
our analysis allows us to extrapolate 
to areas where the data are limited. A 
few of the experimental configurations 
presented in Figure 5 do not have an 
observed data median for comparison 
with the model prediction, either 
because there were few data points 
or because there was an excess of 
censored values. An analysis using a 
simpler technique would not have been 
able to estimate performance in regions 
where the data were inadequate to 
produce an estimate of performance.

CONCLUSIONS
Operator-in-the-Loop testing 

has proven to be an effective way 

to compare the performance of 
different versions of the sonar 
processing system and to discover 
how performance varies across a 
variety of operationally important 
factors. By playing back recorded 
data from real-world submarine 
encounters, OIL testing controls for 
target and environmental variability 
in a way that traditional at-sea testing 
cannot. It provides more data at a 
lower cost, which has enabled IDA 
to show a statistically significant 
improvement in A-RCI for the first 
time, and it has allowed us to quantify 
the operational factors that affect the 
improvement. Laboratory testing will 
not soon replace all at-sea testing, 
but it is a valuable complement.
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