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Executive Summary 

This work was performed in support of the Army Software Marketplace (ASM) 
Acquisition Strategy project (DI-5-4630). The Army has “identified the need to reduce 
costs and delivery time across the enterprise related to software generation, access, 
management, and sustainment.” 

This work and paper partly fulfill paragraph 3g of the statement of work in the project 
description, which states the intent to “evaluate technical options and alternatives … for 
standing up an enterprise-level Army Application Development Environment (ADE) that 
supports development for the full range of software platforms….” This paper also is 
intended as an input to Deliverable 4d, which is “a draft report on the maturity and 
applicability of options that can support the creation of an Army ADE.” 

In addition, the survey of emerging technologies with a sufficient degree of maturity 
and applicability to the workflows that will exist in the planned Army Software Factory 
(ASF) will inform the governance to be articulated in this phase of the ASM study. 

The document provides a partial survey of relatively recent research efforts reported 
in the literature in the area of automated source code generation using methods from 
artificial intelligence (AI) in general, and machine learning (ML) in particular. The results 
of the literature search led to discussions among the IDA subject matter experts. Those 
discussions are captured in this paper. 

For this paper, we use a relatively broad definition of AI that includes ML, as well as 
a number of specific technologies such as reinforcement learning (RN) and recurrent neural 
networks (RNN). We narrowed our scope to papers published on or after 2010 in order to 
meet the fiscal and time limitations of this effort. We are aware that in so doing we may 
have left out a large body of pertinent previous research, as well as the additional context 
that can be imparted by reviewing literature over a substantially longer baseline, but our 
assumption is that older, promising approaches are likely to have been refined and 
incorporated in more recent works, some of which we cover here. This is an active area of 
research, and although we have tried to identify all important papers therein, there are likely 
to be papers we have missed due to the volume of activity and our lack of time. 
Nevertheless, we believe this is a useful survey of a challenging area. 

Generating source code through AI is not a solved problem. Many approaches have 
worked only in laboratory settings and/or only on small-scale problems. If the need is to 
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develop industrial-scale software today, then more conventional approaches are indicated 
in almost all cases. 

We identified eight promising research efforts but found the following six to be the 
most worthy of further research funding: 

1. Determining what a program should be from a small set of input/output pairs is 
hard, even for humans, because a large number of programs could generate that 
data. However, it has been done. IP approaches have successfully developed 
small programs, such as inferring string manipulation programs in spreadsheets 
(an approach that is implemented in Microsoft Excel’s “flash fill” function). 
Microsoft’s DeepCoder [Balog 2017] uses IP approaches to learn what programs 
should look like, which can aid in program generation. 

2. Translating natural language into source code is hard, especially since typically 
natural language has many ambiguities, and background knowledge is important. 
However, the approach in [Yin 2017] looks especially promising — it simplifies 
the challenge the underlying algorithm must implement and makes it easier for 
an RNN to discover the recursive structures. 

3. Patch generation to repair existing code is a narrower problem but extremely 
useful, and MIT’s Prophet [Long 2016] has been demonstrated on larger 
codebases.1 

4. It is possible to convert natural language to UML class diagrams and then use 
those diagrams to automatically generate source code stubs and the general 
program structure (see [More 2012], [Sharma 2015], and [Gulia 2016]). This 
approach all by itself is somewhat limited — the source code for the methods and 
functions that make up the body of the code stubs would not be generated by this 
technique, and a programming-level understanding of what to state in natural 
language is required. However, this approach could be fruitful in combination 
with some of the other ASCG techniques discussed in this paper. 

5. Converting UI sketches into code is promising — both [Beltramelli 2017] and 
[Wilkins 2018] demonstrate some useful prototypes, although they are expressly 
limited in scope.  

6. Creating a higher-level abstraction for source code, instead of trying to directly 
generate text. For example, several of the approaches discussed in this paper use 
ASTs (see [Yin 2017] [Li 2018]). Such higher-level models should make it easier 
for learning systems to identify patterns and create syntactically correct code 
(e.g., ensuring that block ending marks match block beginning marks). Using 

                                                
1 See https://www.kestrel.edu/home/projects/apt/. 

https://www.kestrel.edu/home/projects/apt/
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representations that easily model these higher-level structures should make it 
easier to use well-known techniques such as RNNs and could possibly make it 
easier to extend those techniques to deal with the underlying structure of source 
code. 

Several of the additional approaches surveyed emphasize creating a higher-level 
abstraction for source code instead of trying to generate the scripts directly. For example, 
several use abstract syntax trees [Yin 2017] [Li 2018]. Such higher-level models should 
make it easier for learning systems to identify patterns and create syntactically correct code 
(e.g., ensuring that block ending marks match block beginning marks). Using 
representations that easily model these higher-level structures should facilitate the use of 
well-known AI techniques such as RNN and possibly make it easier to extend those 
techniques to deal with the underlying structure of source code. 

Given the ever-growing importance of software in all spheres of modern life, we 
expect that research in this area will accelerate in the future and that more effective methods 
will be developed and eventually commoditized. 
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1. Introduction 

This work was performed in support of the Army Software Market Place Acquisition 
Strategy project (DI-5-4630). The Army has “identified the need to reduce costs and 
delivery time across the enterprise related to software generation, access, management, and 
sustainment.” 

This work and paper partly fulfill paragraph 3g of the statement of work in the project 
description, which states the intent to “evaluate technical options and alternatives … for 
standing up an enterprise-level Army Application Development Environment (ADE) that 
supports development for the full range of software platforms….” This paper is also an 
input to Deliverable 4d, “a draft report on maturity and applicability of options that can 
support the creation of an Army ADE.” 

In addition, the survey of emerging technologies with a sufficient degree of maturity 
and applicability to the workflows that will exist in the planned Army Software Factory 
(ASF) will provide the rationale for the governance to be articulated in this phase of the 
ASM study. 

The document provides a partial survey of relatively recent research efforts reported 
in the literature in the area of automated source code generation (ASCG) using methods 
from artificial intelligence (AI) and machine learning (ML). The results of the literature 
search led to discussions among the IDA subject matter experts. Those discussions are 
reported in this paper. 

For this paper, we use a relatively broad definition of AI that includes ML, as well as 
a number of specific technologies such as reinforcement learning (RN) and recurrent neural 
networks (RNN). We have narrowed our scope to papers published on or after 2010 in 
order to meet the fiscal and time limitations of this effort. We are aware that in so doing 
we may have left out a large body of pertinent previous research, as well as the additional 
context that can be imparted by reviewing literature over a substantially longer baseline, 
but our assumption is that older promising approaches are likely to have been refined and 
incorporated in more recent works, some of which we cover here. This is an active research 
area, and though we have tried to identify important papers in this area, there are likely to 
be papers we have missed due to the volume of activity and our lack of time. Ideally, we 
would examine all the cited works after every search, include all relevant ones, and repeat 
until we were confident all important works were cited. In this case, every time we found 
some material, we found other material as well and did not get a sense of closure. 
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Therefore, we can only call this a partial survey. Nevertheless, we believe this is a useful 
survey of a challenging and active area of research. 

Chapter 2 provides a brief discussion of some technology areas that we decided are 
not in scope for this paper. Chapter 3 presents the survey itself. Chapter 4 ends the main 
body with a number of conclusions. The references are lengthy, because they include 
copious annotations (including some abstracts and commentary). 
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2. Approaches Categorized as Out-of-scope 

To complete this paper in a reasonable time, we had to exclude some approaches and 
materials, as described in the following sections. 

A. Approaches Categorized as Outside AI 
There is no universal agreement on what is or is not included in the terms “artificial 

intelligence” and “machine learning.” For example, some practitioners use ML to 
exclusively refer to statistical techniques and argue that ML is not part of AI, resulting in 
a narrower definition of AI. It is also possible to define AI broadly enough as to encompass 
any kind of automation, since any automation could be viewed as doing something 
“intelligent.” If we interpret AI too narrowly, we exclude too much, and if we interpret it 
too broadly, the term lacks any particular meaning. It’s possible to define AI as “whatever 
we don’t know how to do,” but this is a useless definition; by this definition, we can never 
have any success. This variance in definitions makes it difficult to survey technologies that 
use AI, as it is sometimes difficult to determine what to include or exclude. 

For this paper, we excluded some approaches for automated source code generation 
(ASCG) from our list of AI approaches. This, however, does not mean they are useless, or 
that others may not include them in their collection of AI techniques. In this chapter, we 
note a few of these approaches, in part to show we did not ignore them, and in part to show 
that our conclusions would be different if we included them. 

Some of these excluded approaches are as follows: 

1. General-purpose programming language compilers developed using traditional 
techniques. Compilers translate information in “source code” (this is typically text, 
but it could also be graphical) into something that can be executed by a real or 
virtual machine. Historically, the use of compilers was referred to as “automatic 
programming.”2 If the term AI is considered broadly enough, then all compilers 
could be considered part of AI, as compiling is clearly something that requires 

                                                
2 David Parnas notes that, in the 1940s, the term automatic programming referred to assemblers, whereas in 

later years, it referred to program generation from languages such as FORTRAN or Algol. As he put it, 
“automatic programming has always been a euphemism for programming with a higher-level language 
than was then available to the programmer. Research in automatic programming is simply research in the 
implementation of higher-level programming languages… Of course automatic programming is feasible… 
The only real question [is] the efficiency of the resulting programs. Usually, if the input “specification” is 
not a description of an algorithm, the resulting program is woefully inefficient.” [Parnas 1985]. 
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intelligence when done by humans. Compilation involves symbolic manipulation 
and is often implemented by transformation rules; both terms are often associated 
with AI. That said, traditional compilers are usually not included in the AI 
literature. There are many possible reasons for this exclusion. For example, 
compiler input usually is in the form of a very rigidly defined programming 
language (designed to be compilable), instead of a natural language narrative. In 
addition, the transformation rules typically do not attempt to capture wider world 
knowledge, and they do not contain any kind of “learning.” In any case, there is a 
very large independent set of literature on compilation of general-purpose 
programming languages, and those traditional compilation techniques are 
excluded from this paper. We do include papers when approaches are used outside 
that literature on compilation (e.g., if the input is natural language or if ML is 
used). 

2. Model-driven engineering (MDE) / Model-driven architecture (MDA). A number 
of software systems have been developed using an MDE/MDA approach. [Klein 
2015b] defines MDE as “a software development approach that treats models as 
the primary artifacts created and used by software lifecycle processes…. Typical 
modeling languages include the standards-based Unified Modeling Language 
(UML) and Architecture Analysis and Design Language (AADL), as well as 
proprietary languages such as the Integranova’s Model Execution System 
(M.E.S.).” It is possible to generate large amounts of code using an MDE/MDA 
approach, though whether or not these outputs will be effective in a particular 
situation depends on a variety of factors, including contractual factors. When code 
is generated, it is generated from the models. However, the code generation 
approach in this case can use essentially the same approaches as compilers, to the 
point where it is difficult to distinguish them. Such approaches are often not 
considered part of AI; for example, in [Klein 2015b] the terms “artificial 
intelligence” and “machine learning” never occur in the paper, and the term 
“knowledge” always refers to organizational knowledge. It is possible to apply AI 
within these approaches, but we will only include such papers if there is an 
additional reason to consider them in scope. For more about MDE/MDA, see 
[Klein 2015a] and [Klein 2015b]. 

3. Computer-Aided Software Engineering (CASE) tools, Interactive Development 
Environments (IDEs), and traditional code generators. There are many tools that 
allow people to enter various representations of software (typically graphical) and 
generate code. These are often not considered part of AI. Again, they tend to use 
approaches similar to traditional compilers (if they can even be distinguished from 
them), and terms like “artificial intelligence” or “machine learning” are usually 
not used to describe them. For example, the survey of [Rosales-Morales 2015] 
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does not mention AI except when discussing [Danilchenko 2012]. Here too, we 
will only include such papers if there is an additional reason to consider them in 
scope. For an older survey and analysis of such tools, see [Fife 1987]. A much 
more recent survey and analysis is in [Rosales-Morales 2015]. 

4. Formal methods, formal verification, formal proof, and stepwise refinement. 
There is a long history of applying mathematics to the analysis and development 
of software. These involve creating mathematical specifications of what the 
software should do. These approaches often involve proofs that the software or a 
model of the software meets those specifications. The proofs themselves often 
involve tools such as theorem provers, which show that a given set of assumptions 
leads inexorably to a conclusion. However, creating proofs is not the same as 
creating a useful program, so we have excluded theorem provers from this paper.3 
One approach to handling complex systems is stepwise refinement, where 
sequences of refinement steps transform higher-level statements into more detailed 
models or code. Note that this can eventually lead to program generation from 
higher-level specifications. This approach can be very useful when the goal is 
highly reliable software, but it requires significant mathematical expertise and is 
much more difficult than writing a program when the reliability requirements are 
not as strong. Examples of such work include Kestrel Institute’s Automated 
Program Transformations (APT) work,4 which builds on ACL2.5 The Coq proof 
assistant6 is also widely used. For surveys about formal methods, see [Almeida 
2011], [Black 2016], and [Wheeler 2019]. Most of this work is not widely 
considered part of AI (although some theorem provers are). In addition, the effort 
required to use these efforts today means that when people choose them, they are 
choosing them due to very strong reliability or security requirements, not because 
they wish to automatically generate source code per se. In particular, there is no 
expectation in the near term that these approaches will be less expensive or faster 
at generating code than traditional approaches, as creating the rigorous 

                                                
3 The Curry-Howard correspondence (also known as the Curry–Howard isomorphism or equivalence) proves 

that a proof is a program, and the formula it proves is the type for the program. This correspondence is an 
important theoretical underpinning in programming language theory and in proof theory. However, this 
correspondence does not mean that a program generated from a proof is efficient enough for direct use, 
and what’s more, generating such proofs is generally much more difficult than simply writing a program. 
So although this correspondence is an important theoretical tool, it does not necessarily result in the kind 
of program generation considered in this paper. 

4 https://www.kestrel.edu/home/projects/apt/ 
5 http://www.cs.utexas.edu/users/moore/acl2/ 
6 https://coq.inria.fr/ 

https://www.kestrel.edu/home/projects/apt/
http://www.cs.utexas.edu/users/moore/acl2/
https://coq.inria.fr/
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specifications and related information is often challenging and time consuming. 
Thus, we exclude them in this paper. 

B. Approaches That Do Not Generate Source Code 
There are a number of systems for teaching a computer what to do that do not generate 

software source code. This includes some systems for “programming by demonstration” 
that teach a computer or a robot new behaviors by demonstrating the task. Some systems 
that are described as implementing “programming by example” also do not generate source 
code. The goal of interactive task learning (ITL) systems is to enable “intelligent artificial 
agents or robots [to learn] new tasks through natural interactions with humans” [Laird 
2017]. The definition of ITL does not strictly forbid generating code, but there is no 
emphasis on generating source code as the way to represent learned tasks, and its general 
emphasis is instead on creating systems that do not require programming at all. 

These approaches can be useful, but their learned results cannot be reviewed or 
modified as traditional source code. In many circumstances, the availability of source code 
may be irrelevant, as often what is wanted is simply a particular kind of behavior or result. 
Therefore, this paper excludes approaches that do not generate source code. 

C. Approaches Categorized as Programming 
Some approaches may be categorized by some practitioners as AI but are essentially 

traditional programming efforts. If applying those techniques and methods requires 
essentially the same kind of approach and expertise as other approaches to programming, 
then they may be very useful, but they are outside the scope of this paper. For example, we 
exclude the basic application of programming templates or macros; these do not require 
any special knowledge representation or learning and are standard “tricks of the trade” in 
software development. 

Logic programming languages enable developers to enter in some logical form a set 
of sentences expressing facts and rules about some problem domain. Examples of such 
languages include Prolog and Datalog. These can be effective in some domains, but they 
are still fundamentally programming languages, and thus they are excluded as being 
outside the scope of this paper. 

Probabilistic programming languages unify “general purpose programming with 
probabilistic modeling; literally, users specify a probabilistic model in its entirety (e.g., by 
writing code that generates a sample from the joint distribution) and inference follows 
automatically given the specification” (see http://probabilistic-programming.org). In some 
cases, probabilistic programming can replace many lines of code with few lines of code 
(see [Hardesty 2015]). However, it is still programming, so we exclude probabilistic 

http://probabilistic-programming.org/
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programming from this paper. Systems designed to generate probabilistic programs may 
be in scope (e.g., we include [Saad 2019] in this paper). 

D. Older Materials 
As noted above, the field of automated code generation is vast, and, therefore, we 

have somewhat arbitrarily limited our survey to relatively recent techniques. We are aware 
that in so doing we have left out a large body of pertinent previous research, but our 
assumption is that older promising approaches are likely to have been refined and 
incorporated in more recent works. That said, it is worthwhile to note some of these 
materials. The following is an incomplete list: 

a. [Bierman 1985] surveys 10 methods for “automatic program construction” and 
specifically focuses on formal methods for the automatic construction of algorithms 
from fragmentary information. It divides them into two categories: synthesis from 
formal specifications and synthesis from examples. It also discusses the possibilities 
from natural language processing. It notes that all the methods were in active research 
at that time. 

b. [Balzer 1985] summarizes work from 1970 through 1985 on “extended automatic 
programming,” which includes “some means of acquiring the high-level specification 
to be compiled, some means of determining that it is the intended specification, and 
some (interactive) means of translating this high-level specification into a lower-level 
one which can be automatically compiled.” 

c.  [Rich 1992] provides “an overview of current approaches to automatic programming 
organized around three fundamental questions that must be addressed in the design of 
any automatic programming system: What does the user see? How does the system 
work? What does the system know?” 
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3. Partial Survey of AI Technologies Applicable 
to Automated Code Generation 

In this chapter, we present various approaches for automated source code generation 
(ASCG) using AI. We also discuss some related work of potential applicability. The 
approaches were identified via a search of literature published in or since 2010. The results 
of the literature search led to discussions within IDA, resulting in portions of the 
commentary reported here. The emphasis is upon relatively recent work; the field of AI is 
broad and spans the 1950s to the present. 

The first section of this chapter is the heart of this paper — a survey of approaches 
for ASGC using AI. The second section discusses possibly related work that is not focused 
directly on the specific issue of ASCG, but might provide general ideas on how to approach 
it. The third section discusses program representation, which is a common theme across a 
number of different papers and one that appears especially important in solving the ASCG 
challenge. 

The paper identifies several areas that we feel are especially promising and we explain 
why. However, it should be noted that these are the opinions of a small group of 
researchers, and that it is very difficult to determine the fruitfulness of a particular research 
approach ahead of time. 

Many (though not all) of the approaches described here use ML. It is important to 
note that when using an ML approach, there is often a difference between initial training 
and later performance. A system may perform very poorly during training. Training may 
or may not occur during performance. A system’s true capabilities are only shown during 
actual performance when it is provided inputs that were not used during previous training. 

A. Automated Generation of Source Code Using AI 
This section discusses the reviewed AI approaches to ASCG using AI — at least 

partial generation. We have primarily organized this section by the kind of input used by 
the AI technology to generate source code and, to some extent, by the kind of output 
produced. One problem with this organization is that it sometimes separates related 
technological approaches. However, this organization is much easier to understand than 
some alternatives, and as noted in [Christakopoulou 2017], “For computers to program 
computers, we must first address how programming problems will be represented and how 
performance will be evaluated.” 
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1. Translate from natural language into a program. 

a. [Njonko 2012] argues for a general approach to (1) transform business rules 
(BRs) expressed in a natural language into Semantics of Business Vocabulary 
and Business Rules (SBVR), and then (2) translate SBVR into an executable 
form. They developed a prototype that could generate some executable SQL 
scripts (e.g., a SQL select statement that could show all records of a given type 
that failed to meet a specific business rule). The authors believed that SBVR could 
be useful for this purpose because it is an Object Management Group (OMG) 
standard specification that “provides a way to capture specifications in natural 
language (NL) and represent them in formal logic so they can be machine-
processed.” It is unclear from the paper how difficult it would be to scale up the 
system to handle “real” business rules, and it would essentially be focused only 
on business rules when based on SBVR (since that is the focus of SBVR).7 

b. [Roychoudhury 2017] describes a semi-automated transformation of the legal NL 
(English) text to SBVR’s Structured English (SE) notation and then to specific 
executable forms. Again, these papers focus on BRs. 

c. [Desai 2016] takes natural language and produces expressions in a target 
domain-specific language (DSL). The approach requires training data consisting 
of pairs of natural language and an equivalent DSL expression. The problem is 
simplified by focusing on DSLs (instead of general-purpose programming 
languages) and generating a ranked set of possible programs (instead of a single 
program). 

d. [Yin 2017] translates natural language statements into a general-purpose 
programming language, specifically Python. The authors noted that a problem 
with [Ling 2016] is that “This work treats code generation as a sequence-to-
sequence modeling problem, and introduce [sic] methods to generate words from 
character-level models, and copy variable names from input descriptions. 
However, unlike most work in semantic parsing, it does not consider the fact that 
code has to be well-defined programs in the target syntax.” To resolve this, [Yin 
2017] uses ML techniques to translate natural language into an abstract syntax 
tree (AST), and then uses deterministic generation tools to translate the AST into 

                                                
7 Of course, SBVR is only one example of “structured English.” SBVR could be extended, or a different 

structured language could be used, to accommodate the “primitives” required to capture constructs 
necessary to support the generation of source code (e.g., by adding the required “structured English” form 
to express a more general loop). As an example of the potential for extensibility, we note that IDA 
developed a demonstration (an actual software application) to convert back-and-forth between SBVR and 
the Object Constraint Language (OCL) used in UML modeling to capture semantics not supported by the 
graphical language. 
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final source code. The authors extended the standard RNN decoder to add 
“additional neural connections which reflect the recursive structure of an AST.” 

PROMISING. Translating natural language into source code is hard, especially 
since natural language typically has many ambiguities and background 
knowledge is important, but some progress has been made. The approach of [Yin 
2017] looks especially promising; this approach simplifies the challenge the 
underlying algorithm must implement and makes it easier for the RNN to discover 
the recursive structures. 

2. Use information from natural language and a structured specification (together) to 
generate source code. 

a. [Raza 2015] presents a “domain-agnostic program synthesis algorithm and 
demonstrate[s] its application to an expressive string manipulation language” 
given a combination of natural language and examples. However, the paper 
focuses on a very narrow problem domain (manipulation of strings). 

b. [Ling 2016] generates source code from a mixture of “natural language and 
structured specification.” Their approach introduces Latent Predictor Networks 
(LPNs), a novel neural architecture that computes “the marginal likelihood over 
latent predictors and generated segments allowing for scalable training.” (See also 
the commentary and extensions of this paper in [Yin 2017].) 

PROMISING. [Raza 2015] is very limited, but [Ling 2016] shows some promise 
in generating a program from natural language and a structured specification. 

3. Use a constrained natural language that looks like natural language but is assigned 
specific semantics (and thus can be turned into code).  

There is a long history of this approach.8 However, this approach can be difficult for 
users; traditional programming languages are themselves constrained languages, so 
the challenge of using a constrained natural language can be similar to the challenge 
of writing a program in a traditional programming language. 

a. OMG’s Semantics of Business Vocabulary and Business Rules (SBVR) [OMG 
2017] is a specification that “defines the vocabulary and rules … for documenting 
the semantics of business vocabularies and business rules for the exchange of 
business vocabularies and business rules among organizations and between 

                                                
8 Although older, it is worth mentioning  [Nelson 2006], which discusses Inform7. That approach offers a 

way to program interactive fiction (IF) using a constrained form of English. It is fundamentally rule-based, 
using rules to map language patterns to underlying models. In this way, it “could be regarded as a 
descendant of Winograd’s program SHRDLU.” Many complications ensue because of the complications 
of English. Interestingly, the constrained language includes ways to define new language processing rules, 
so it is possible to add new natural language constructs that can be used later. 
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software tools.” The specification’s Annex A defines SBVR SE, which defines a 
rigid form of structured English (SE) and a mapping to the underlying model. 
This is not an application of AI by itself, but because it has a rich model and a 
sample notation in a constrained natural language, this is an easier target for 
translating natural language into something that can be executed. [Bajwa 2010] 
presents an approach for translating natural languages to SBVR business rules; 
“a rule based algorithm for robust semantic analysis of English and generat[ion 
of] SBVR rules” is used.  

4. Translate mathematical specifications (or similar notations) into code.  

One term that is sometimes used is program synthesis: the task of automatically 
constructing a program that satisfies a given high-level specification (typically, a non-
algorithmic specification). Note that the term program synthesis is extremely broad, 
and we are focusing on a narrower topic. A challenge with these approaches is that 
they require users to be able to create specifications using mathematics-based 
notations. At this time, these approaches are only able to synthesize very small 
programs. 

a. [Rajeev 2013] proposes a unified framework for program synthesis problems that 
specifically discusses syntax-guided generation. 

b. The annual Syntax-Guided Synthesis Competition (SyGuS-Comp) began in 
2014. It is a competition of program synthesis solvers against a variety of 
benchmarks, where the solvers’ goal is to “find a program that meets a correctness 
specification given as a logical formula.” Benchmarks are expressed in the SyGuS 
input format (SyGuS-IF), a format closely modeled on the SMT-Lib format. More 
information is available at its website at https://sygus.org/. 

c. [Volkstorf 2015] demonstrates a program synthesis approach that can synthesize 
PHP programs to meet simple specifications (e.g., to determine if a number is 
prime or to list the factors of a number). 

d.  [Xu 2018] accepts specifications based on real-time process algebra (RTPA) and 
translates them into MATLAB using an ML approach. “The kernel of the RTPA-
MATLAB code generator learns rules from RTPA specifications for both 
structure and process models in order to automatically generate code in 
MATLAB… the coding rules elicited from RTPA are represented in the learning 
engine covering rules of types, primitive operators and relational operators of 
programs. A finite set of basic rules for code generation is built-in as prior 
knowledge. The system carries out rule learning under supervision for developing 
its own programming knowledge base towards automatic code generation.” One 
positive aspect is that the input has rigorous semantics, so the problems of 
ambiguity in natural language are mostly removed. However, it is not clear that 

https://sygus.org/
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writing such specifications is any faster or easier than writing code, and it is likely 
that fewer people can read RTPA specifications than MATLAB. 

5. Use structured input-output examples to generate code (this approach is sometimes 
called “programming by example”). 

Much of this work is an application of inductive programming (IP), which “studies 
the automatic synthesis of computer programs and background knowledge. IP 
developed from research on inductive program synthesis, now called inductive 
functional programming (IFP), and from inductive inference techniques using logic, 
nowadays called inductive logic programming (ILP). IFP addresses the synthesis of 
recursive functional programs generalized from regularities detected in (traces of) 
input/output examples using generate-and-test approaches based on evolutionary or 
systematic search or data-driven analytical approaches… ILP originated from 
research on induction in a logical framework.” [Gulwani 2015]. A discussion about 
IP is presented in [Gulwani 2015], and the website https://inductive-
programming.org/ provides more information about it. However, there are other 
approaches that have been used as well (as discussed later in this paper). 

Some systems generate programs that attempt to predict future output given past 
examples of input-output pairs. For our purposes, we include them here. 

a. [Gulwani 2012] presents a programming-by-example approach that allows 
spreadsheet end users to automate repetitive tasks without knowing how to 
program. The authors created a domain-specific language (expressive enough to 
capture several real-world tasks in the domain but also restricted enough to enable 
efficient learning from examples) and a data structure for representing consistent 
programs. Their algorithm for synthesizing consistent programs applies “two key 
procedures: (i) Generate learns the set of all programs, represented using data 
structure D, that are consistent with a given single example. (ii) Intersect intersects 
these sets (each corresponding to a different example).” They then ranked the 
generated programs, “preferring programs that are more general [as inspired by] 
Occam’s razor, which states that a smaller and simpler explanation is usually the 
correct one.” This paper builds on the previous paper [Gulwani 2011], which 
shows success in automatically generating string manipulation programs in Excel 
spreadsheets from very few examples. The programs it can generate are small, 
but they are useful in automating tasks for people who cannot program for 
themselves. Current versions of Microsoft Excel incorporate this approach for 
generating a program from data (and then generating new data from the program, 
though the program is not made visible) in its “flash fill” functionality [Gulwani 
2015]. 

https://inductive-programming.org/
https://inductive-programming.org/
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b. [Becker 2013] discusses an experiment using a genetic algorithm to generate code 
in Brainf-ck. It uses a straightforward approach starting with a population of 
random genomes, executing them and ranking them by a fitness score, mating the 
best genomes with mutation to produce a new generation, and repeating until the 
target score was achieved. Brainf-ck was intended as a joke language, but it is 
Turing-complete and has only 8 instructions, enabling a very simple approach 
that generates successful (toy) results. That said, the programs the algorithm was 
asked to generate were extremely trivial (e.g., “print a short text”), and programs 
written in the Brainf-ck language are (by design) difficult for humans to 
understand. It is unclear if this approach could be scaled up to more substantive 
programs, but it is a remarkably direct approach to the problem. 

c. [Kimber 2012] is a PhD dissertation that “presents two novel inductive logic 
programming (ILP) approaches, based on the notion of a connected theory. A 
connected theory contains clauses that depend on one another, either directly or 
via clauses in the background knowledge.” 

d. Various papers discuss generating source code from input-output examples using 
gradient descent and differentiable interpreters; examples include [Riedel 2016], 
[Bunel 2016], and [Gaunt 2016]. However, [Gaunt 2016] also shows that 
programs created by differentiable interpreters are not as effective as discrete 
search-based techniques used by the programming languages community. 

e. Microsoft’s DeepCoder [Balog 2017] improved on previous approaches of source 
code generation from examples and addressed previous concerns (especially 
those in [Gaunt 2016]) through the following modifications: “(1) learning how to 
induce programs; that is, learning how to use a corpus of program induction 
problems to learn strategies that generalize across problems, and (2) integrating 
neural network architectures with search-based techniques rather than replace 
them.” DeepCoder received significant press coverage (e.g., [Gershgorn 2017] 
and [Reynolds 2017]). 

f. [So 2018] synthesizes a program that generates a pattern of characters given an 
input pattern. Their synthesis algorithm combines enumerative search, constraint 
solving, and program analysis. It is remarkably fast but has only been 
demonstrated for an extremely narrow problem. That said, using a constraint 
solver to help generate a program might be useful elsewhere. 

g. Synthesis of probabilistic programs. Probabilistic programs can be used to define 
models (e.g., for analysis, interpretation, or prediction). 

i. [Tong 2016] discusses an approach for building an “expressive probabilistic 
program from [continuous] time series data when the structure of the model 
is not given. The intuition behind our method is to find a descriptive 
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covariance structure of time series data in nonparametric Gaussian process 
regression.” 

ii. [Saad 2019] presents a technique for “constructing probabilistic programs for 
data analysis, interpretation, and prediction” and demonstrates its use for 
obtaining “predictions of new time series data and new multivariate data 
records.” 

PROMISING. Determining what a program should be from a set of input-output 
pairs is hard, even for humans, because there are a very large number of programs 
that could generate them. More broadly, generalization from any set of examples 
is likely to be a difficult task if the objective is extrapolation rather than 
interpolation (i.e., expecting to be able to reason in a situation outside the 
boundaries of the dataset). Even interpolation can be difficult, if by “small” one 
means “sparse” (lots of blank space with no examples in the problem domain). IP 
synthesizes computer programs by defining and exploiting background 
knowledge; this has had a number of successes at small scales (e.g., generating 
spreadsheet string transformations from examples as shown in [Gulwani 2011], 
[Gulwani 2012], and [Gulwani, 2015] and implemented in Microsoft Excel as 
“flash fill”). Synthesis of programs to model time-continuous values (e.g., to 
predict future values) has significant promise. Microsoft’s DeepCoder [Balog 
2017] uses approaches to learn what programs should look like, and that also 
appears to be a promising approach to aid in program generation from a set of 
examples. 

6. Generate source code from a text query and predefined cases using case-based 
reasoning. 

a. [Danilchenko 2012] takes a user specification in text, specifically a medical 
database query, and generates equivalent Java code. It uses a combination of 
Case-Based Reasoning, Routine Design and Template-Based Programming. The 
Automated Coder using Artificial Intelligence (ACAI) system requires cases to 
be defined using XML. A stated advantage is that users do not need to learn SQL.9 

It is not clear how promising this approach is. Currently “ACAI only solves 
database-type problems” focusing on the medical database domain (though the 
authors argue that it could be expanded beyond this). The authors have only 
demonstrated a modest ability to combine plans to produce relatively simple 
database queries, and it requires cases to be defined using XML. In short, this 
approach requires a lot of basic upfront work to perform trivial tasks, and it is not 

                                                
9Someone still has to learn XML and encode cases using XML instead of requiring the end-user to learn 

SQL. It could be debated what is harder. 
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clear how easily the approach could be expanded to more real-world 
circumstances. 

7. Use generate-and-validate patch generation systems.  

Generate-and-validate patch systems “start with a program and a suite of test cases, 
at least one of which exposes a defect in the program. The systems then generate a 
space of candidate patches and search this space to find plausible patches that produce 
correct outputs for all test cases in the test suite” [Long 2016].10 

a. Earlier generate-and-validate patch generation systems include those described in 
[Samimi 2012], [Nguyen 2013], [Samanta 2014], and [Kneuss 2015]. However, 
[Long 2016] claims that they are typically limited to only work on small programs 
with hundreds of lines of code. 

b. Prophet is a novel patch generation system from MIT that uses a learned model of 
correct code to rank the patches in its search space, with the goal of obtaining a 
correct patch as the first patch (or one of the first few patches) to validate. It is 
able to handle larger applications from tens of thousands to a million lines of code 
[Long 2016]. 

PROMISING. Patch generation to repair existing code is a narrower problem, 
but patch generation systems are extremely useful, and MIT’s Prophet [Long 
2016] has been demonstrated on larger codebases. 

8. Accept natural language and generate UML diagrams (such as class diagrams) that 
can then be turned into code. 

One challenge is that UML diagrams focus on the overall architecture of a software 
system, so the diagrams provide guidance for only some of the necessary code to be 
created.  

a. Requirement Analysis to Provide Instant Diagrams (RAPID) is “a desktop tool to 
assist humans to analyze textual requirements and extract UML diagrams 
[specifically class diagrams]. The evaluation of the RAPID system is in process 
and will be conducted through two forms of evaluation, experimental and expert 
evaluation.” [More 2012]. However, the approach is not flexible and is limited in 
what it can produce. 

b. [Sharma 2015] translates natural language into UML class diagrams. To improve 
the results, they “transform the requirements statements to an intermediary frame-

                                                
10 A more in-depth overview and discussion can be found in “The White-Hat Hacking Machine: Meet 

Mayhem, winner of the DARPA contest to find and repair software vulnerabilities”, IEEE Spectrum, Year: 
2019, Volume 56, Issue 02, pp. 30–35. It should also be noted that the systems that resulted were operating 
upon very large code bases (e.g., operating systems). 
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based structured representation using dependency analysis of requirements 
statements and the Grammatical Knowledge Patterns. The knowledge stored in 
the frame-based structured representation is used to derive class diagrams using 
[a] rule-based algorithm.” 

c. [Gulia 2016] takes natural language text and generates UML diagrams 
(specifically activity diagrams and sequence diagrams). This approach is more 
symbolic, using the Stanford part-of-speech (POS) tagger and Stanford parser to 
parse the sentences. Simple rules are then used to transform this information into 
UML diagrams. 

d. [Narawita 2016] generates UML use case diagrams and class diagrams from 
natural language. It uses a simple natural language processing library coupled 
with basic ML. It was tested “with more than twenty (20) scenarios and it has an 
accuracy level of around 70%.” Note that such a system would typically need to 
have a higher reliability to be useful. This system was developed as an 
undergraduate project, so while this particular system is not very capable, it 
demonstrates that natural language processing libraries are easy enough to use so 
that an undergraduate project can use one (though not necessarily with strong 
results). 

PROMISING. It is possible to convert natural language to UML diagrams and 
then use them to generate some code (see [More 2012], [Sharma 2015], and 
[Gulia 2016]). However, this is very limited – most code would not be generated 
by this technique, and the technique requires a programming-level understanding 
of what to state in natural language. It is not clear how fruitful this approach can 
be for the general case of ASCG. 

9. Generate source code given a label (for example, a set of API calls or types) carrying 
a small amount of information about the code that is desired and a corpus of labeled 
programs. 

a. BAYOU generates Java code given labels and a corpus — training not on code 
but on program sketches — and concretizing them. BAYOU is described in 
[Murali 2018]. The work was funded by Google and the US military. BAYOU is 
publicly available at https://github.com/capergroup/bayou under the Apache 2.0 
open source software license. It is not clear how promising this is; the approach 
is interesting, but the need for labels is a concern. 

https://github.com/capergroup/bayou
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10. Allow users to provide an image (such as a hand drawing or a screenshot) describing 
a UI and then translate that image into code that implements the UI.11 The resulting 
code or data might be edited later using a UI editor. 

a. Beltramelli of Ulzard Technologies discusses pix2code in [Beltramelli 2017]. This 
generates code from a graphical user interface (GUI) screenshot using deep 
learning methods. They managed “to automatically generate code from a single 
input image with over 77% of accuracy for three different platforms (i.e. iOS, 
Android and web-based technologies).”12 

b. [Wilkins 2018] discusses Airbnb’s sketch2Code system, which is “able to scan the 
mockups made by the designers and translate them into code.” (Summary by 
[Cheng 2018]). In short, users were able to hand-draw representations of a UI 
(including indicators for different kinds of UI components), and the system was 
able to generate code that implemented the UI. The goal was to rapidly test 
designs. Their prototype supported about a dozen different kinds of hand-drawn 
components. The authors were pleasantly surprised by the results, and they 
believe it has potential. 

PROMISING. Converting hand-drawn UI sketches into code is somewhat 
promising as it can potentially reduce the human effort required to specify the UI. 
Both [Beltramelli 2017] and [Wilkins 2018] have demonstrated some useful 
prototypes, although they are expressly limited in scope. 

11. Generate test cases using operators, an initial state, and a goal state. 

a. [Memon 2001] presents Planning Assisted Tester for grapHical user interface 
Systems (PATHS), which automatically generates “test cases for [Graphical User 
Interfaces [GUIs]) that [exploit] automated planning, a well-known technique in 
artificial intelligence.” Given a set of operators, an initial state, and a goal state, 
a planner produces a sequence of operators that transforms the initial state into 
the goal state. “This approach is designed to create test cases, not application 
code.” However, test cases are often created by writing code, so this can be 
viewed as a way to write code. 

                                                
11 A more detailed analysis is required to assess the value added from such an approach and what is already 

supported by UI editing tools like Visual Studio (VS). Such tools allow users to create and edit UIs using 
a GUI. The approaches discussed here support source code generation from screenshots or hand-drawn 
sketches, rather requiring something be specifically “drawn” via UI editing tools. It could be argued that 
requiring users to use a UI editing tool is not difficult, and thus mechanisms to generate UIs from other 
input sources are not an adequate improvement to be worthwhile. 

12 77% accuracy is almost certainly unacceptable for a software development environment intended to 
produce apps that will be used by soldiers deployed in theaters of operation. It is arguable that accuracies 
in the range of 99%+ is what is needed. 
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12. Detect defects (bugs) in code.  

This approach is not focused on source code generation; instead, it focuses on 
detecting bugs13 in existing code. However, it seems worth mentioning because using 
AI to speed development of quality code seems relevant to the overall goal. This 
approach could theoretically be used in tandem with code generated by other AI-
based approaches to increase the quality of the final result. 

a. [Chappelly 2017] used ML to find defects. In their approach, “While on the 
surface the initial results were encouraging, further investigation suggests that the 
machine learning techniques we used are not suitable replacements for static 
program analysis tools due to low precision of the results. This could be due to a 
variety of reasons including not using domain knowledge such as the semantics 
of the programming language and lack of suitable data used in the training 
process.” We suspect that the lack of suitable data was a key reason for this 
problem; they were using an ML approach based on statistical methods, but their 
data sets were small because they were from hand-created code (80% artificial 
samples of small correct and incorrect code, 20% fragments of real code). 

b. DeepBugs [Pradel 2018] “reasons about names based on a semantic 
representation.” It learns likely incorrect code examples by using simple code 
transformations to create artificially-seed defects. This approach “revealed 102 
programming mistakes (with 68% true positive rate) in real-world code.” Some 
additional information is in [Pradel 2017]. Its implementation is available at 
https://github.com/michaelpradel/DeepBugs. This seems to have been more 
successful; we suspect that is because they could have a far larger training dataset 
through artificially seeded defects. 

PROMISING. The literature surveyed here is about detecting software defects, 
instead of actually writing code; however, simplifying the problem can make it 
more immediately tractable. DeepBugs [Pradel 2018] suggests that creating 
larger datasets14 by using techniques such as artificially seeded defects may be 
key to progress. That said, there are already many static analysis tools including 
compiler warning flags, source code quality analyzers (“style checkers”), and 
source code weakness analyzers that successfully find defects without these 
approaches [Wheeler 2016]. These new approaches do not need to completely 
replace current approaches, but they do need to find enough defects without too 

                                                
13 See https://www.kestrel.edu/home/projects/apt/. 
14 This is consistent with the finding from the competitors in the DARPA challenge — all of the systems 

were supercomputer-class systems. 

https://github.com/michaelpradel/DeepBugs
https://www.kestrel.edu/home/projects/apt/
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many false positives compared to existing technologies. It remains to be seen if 
these alternative approaches will become robust enough to use them as well. 

13. Use a different internal model designed for representing source code when processing 
source code. 

This is not an approach that can be used in isolation; instead, it is a potential 
underlying technological enhancement to many of the approaches above. 

a. [Hellendoorn 2017] argues that a different language modeling approach can be 
more effective when processing source code, because source code has special 
properties (e.g., new identifiers proliferate and there are deeply nested scopes). 
They present an adapted N-gram model for source code and show that it has some 
improved measures (e.g., a higher probability to predict a “next token” in 
program). 

14. Provide a program to score whether or not the generated program meets the objective, 
and use the scoring program source code (as well as possibly executing it). 

This approach requires writing a program in the first place, which may seem 
unsatisfactory as that requires development expertise. However, it may be easier to 
write a program to verify that an answer is correct than to write the program that 
produces correct answers. The approach is interesting, but the requirement to write a 
program makes it harder to recommend.15 

a. [Christakopoulou 2017] accepts the source code of a program that can verify if 
another program meets a specification and uses the output of the verification to 
guide the generation of the program that meets the specification.16 They call this 
a “glass box” approach because they use the information from the verifier’s 
source code. 

15. Generate “random” code to see if it will run. 

This is an “obvious” way to use some ML techniques, especially as there have been 
systems trained to “write” works by past authors such as Shakespeare. The 
fundamental problem with this approach is that usually just generating a running 
program is not the goal; you can go to sites like GitHub or GitLab and download 
large sets of runnable programs. In most cases people need programs that perform 
specific tasks, and this approach fails to do this. This approach could be useful in 

                                                
15 One approach to strong forms of verification is theorem proving, which is difficult but has been used quite 

successfully in some domains, such as Macsyma’s work (1970s and all the symbolic math systems that 
followed), as well as John Gabriel’s work (early 1980s) using theorem provers to verify safety/reliability 
of nuclear power systems. Formal methods (applying mathematical techniques to specifications and 
models) is its own domain and is beyond what we cover in this paper. 

16 This may work best, or perhaps only, with constrained source code languages. 
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highly specialized cases (e.g., as a way to provide test data for compilers), but those 
are narrow uses. We further note that even though pure random program generation 
is probably of little utility, randomness guided by methods such as genetic 
programming can have a great deal of utility. For example, this approach has been 
successfully used to program neuromorphic computing technologies [Schuman 
2015]. 

a. [Priya 2017] discusses automatically generating essentially random code for a 
variety of programming languages using character-based RNNs. They managed 
to demonstrate its ability to create code for a variety of problems (which is 
impressive), but they are all small, and the requirement to write a program in the 
first place is a limiting factor. 

16. Interactively ask the user questions when a rule-based system needs to know what 
direction to take. 

a. [Imam 2014] describes code generation with an expert code generator using rule-
based and frames knowledge representation techniques (ECG-RF). Predefined 
frames of fixed structures are filled with code chunks from a knowledge base by 
inferencing system, which is guided by the user. The user is asked questions, and 
the system responds based on those answers. One example the authors give 
generates assembly code for a DOS driver. This approach is easy to understand 
and clearly can work, but rule-based systems can be challenging to build as the 
rules get more complex, and the paper by itself doesn’t suggest how to deal with 
that. 

17. Support code completion. 

Instead of trying to write the whole program, use techniques to recommend specific 
code fragments while a human is writing source code. 

a. [Li 2018] describes a code-completion mechanism that manages to do well even 
without type information (e.g., for a language like Python). The discussion may 
provide insights for other approaches as well: 

i. The authors note that “(standard) neural language models such as Recurrent 
Neural Networks (RNNs) can capture sequential distributions and deep 
semantics (but) are limited by the so-called hidden state bottleneck: all the 
information about current sequence is compressed into a fixed-size vector. 
The limitation makes it hard for RNNs to deal with long-range dependencies, 
which are common in program source code…” Their solution is to use 
abstract syntax tree (AST) representations instead of simple text and use a 
tailored “attention mechanism” so the system can learn to retrieve and make 
use of relevant previous hidden states. As they note, “Representing programs 
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as ASTs rather than plain text enables us to predict the structure of the 
program, i.e., type of each AST node.” 

ii. Words (such as variable names) tend to repeat locally, even if they are rare 
globally. They create “pointer mixture” to try to predict when to use the 
globally common vocabulary and when to use local words. 

PROMISING. Code completion appears promising because the problem appears 
to be much easier (only small fragments need to be generated, not an entire 
program) and the impact of inaccuracy is greatly reduced (the user is a software 
developer who can confirm if the suggested code is correct and can change it if it 
is incorrect). It also fits easily into existing integrated development environments 
(IDEs), which often already have some mechanisms for interactive 
recommendations. In addition, [Li 2018] provides additional evidence that 
focusing on underlying abstract syntax trees (ASTs) may be a better 
representation for programs for this purpose. Extending learning with an 
“attention mechanism” may also be valuable in helping learning systems to learn 
from long-range interconnections. 

18. Aid in generalization and refinement of code templates to help developers search or 
transform source code. 

a. [Molderez 2016] describes an approach that starts with an existing system 
(EKEKO/X) that enables developers to develop code templates for searching or 
transforming source code. Their approach uses genetic algorithms and fitness 
functions to automatically generalize and refine a template group (so it matches 
only what is desired). This helps existing software developers develop software, 
and it depends on knowledgeable developers, as they will need to work at a very 
abstract level. It is unclear how much effort would be saved in practice (no such 
experimental data is provided in the paper), which is important to know about 
such a different approach to supporting developers. 

19. Other related surveys. 

a. [Allamanis 2018] is an extensive survey of papers relating to ML and ASCG, 
including some directly relevant papers and discussions about representations that 
could be helpful. Interested readers should also investigate this survey. It is worth 
noting that the resulting programs (or program fragments) need not be perfect. It 
would be possible for systems to create “draft” code to be reviewed by humans.17 

                                                
17 It is also possible for humans to create draft code to be reviewed and improved by computers. Indeed, one 

of the approaches we listed earlier specifically looks for defects. Tools that report likely defects (and 
possibly suggested fixes) to human software developers can be very helpful as long as the false positive 
rate for reports is not too high. Many software developers use such tools today. However, if the tool’s 
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B. Possibly Related Work 
The following do not directly apply to ASCG, but might hint at solutions: 

1. There are various efforts to generate natural language from source code (i.e., the 
opposite direction of ASCG). For a survey, see [Neubig 2016]. 

2. Various tools have been developed to create mathematical proofs using AI 
techniques (e.g., [Whalen 2016]). Mathematical proofs and programs do share 
some features, so these approaches might be relevant.18 

3. Solutions to well-known AI problems have become far more capable over the last 
few years. Some of those solutions may have lessons for generating source code 
as well: 

a. Google’s AlphaZero algorithm can achieve superhuman performance in 
many challenging games, specifically Chess, Shogi, and Go [Silver 2018]. 
This was achieved using no domain knowledge except the game rules.19 

b. [Jaderberg 2019] most recently demonstrated that AI techniques, such as 
RNN, can be used in other game categories, such as Capture the Flag, where 
two multiplayer teams compete in capturing the flags of the opposing team. 

c. Stacked Generative Adversarial Networks (StackGAN) can generate 256x256 
photo-realistic images conditioned on text descriptions [Zhang 2017]. 

d. WaveNet is a deep neural network for generating raw audio waveforms. It 
can generate audio from text that is more natural sounding than many previous 
systems [Oord 2016]. 

4. A large amount of effort and creativity is ongoing to develop new and/or possibly 
improved techniques in AI. 

a. RNNs are neural networks that support training of sequences, which is 
relevant for tasks such as natural language translation and generating source 
code. The RNN approach has been very effective for many problems, as noted 
in [Karpathy 2015]. 

b. Generative adversarial networks (GANs) and RN are extremely general 
techniques for improving capabilities over time. 

                                                
results would be directly executed without first being reviewed by a software developer, then, in many 
cases, the tool would need to be very nearly perfect. This points to one of the serious limitations in the 
current state-of-the-art for many AI technologies: Accuracy is not always their strong suit. 

18 There is a long and rich history of computer-generated proofs dating at least back to the 1970s. 
19 Technically, the game’s rules were utilized to generate example simulations of the games, and those were 

then used to train the systems. 
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c. [Chen 2018] introduces a new family of deep neural network models (instead 
of specifying a discrete sequence of hidden layers, the derivative of the hidden 
state is parameterized using a neural network). 

5. There are many libraries / frameworks / tools to help develop AI/ML systems. In 
many cases, these are open source software (OSS) and are typically free to 
download and improve: 

a. TensorFlow (https://www.tensorflow.org/): TensorFlow is an open source 
software library for high performance numerical computation (including 
those for ML). For example, TensorFlow was used on the world’s most 
powerful supercomputer (Summit at DOE’s Oak Ridge National Laboratory) 
as part of a climate change research experiment and achieved exaflop-level 
performance (one exaflop is 1018 floating point operations per second). 
Google employees helped the project adopt TensorFlow to Summit’s scale 
and expect to use the experience they gained elsewhere [Simonite 2019]. This 
is an interesting example where government and industry have collaborated 
(including via the use of OSS). 

b. Keras (https://keras.io/): Keras is a high-level neural network API, written in 
Python and capable of running on top of TensorFlow, the Microsoft Cognitive 
Toolkit (CNTK), or Theano. 

c. Scikit-learn (https://scikit-learn.org/): Scikit-learn is an ML system 
implemented in Python. 

d. Dlib (http://dlib.net/): Dlib is a C++ toolkit containing ML algorithms and 
tools for creating complex software in C++ to solve real world problems. 

e. For completeness we also include the R programming language which 
contains a large number of ML libraries (https://www.r-project.org/) 

6. There are many existing databases and pre-trained models. ML algorithms 
generally require large datasets for training. Transfer learning methods can utilize 
pre-trained models for related problems to train models for new applications. The 
databases may be specifically developed for ML or may simply be datasets that 
are available. In the case of software, the large amount of software available as 
OSS through GitHub, GitLab, and other repositories may be useful as part of a 
training dataset. 

C. Representations of Programs 
Several approaches emphasize creating a higher-level abstraction for source code 

rather than trying to directly generate text. For example, several use ASTs [Yin 2017] [Li 
2018]. 

https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/
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We think using representations that easily model these higher-level structures may 
make it easier to use well-known techniques such as RNN models, as well as making it 
easier to extend those techniques to deal with the underlying structure of source code. Such 
higher-level models should make it easier for learning systems to identify patterns and 
create syntactically correct code (e.g., ensuring that block ending marks match block 
beginning marks). 
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4. Conclusions 

ASCG using AI is not a solved problem. Many approaches have only worked in 
laboratory settings and/or only on small-scale problems. If the need is to develop 
industrial-scale software today, then more conventional approaches are indicated in almost 
all cases. 

That said, we identified eight promising research efforts, but found the following six 
most warrant further research funding: 

1. Determining what a program should be from a small set of input/output pairs is 
hard, even for humans, because a large number of programs could generate that 
data. However, it has been done. IP approaches have successfully developed 
small programs, such as inferring string manipulation programs in spreadsheets 
(an approach that is implemented in Microsoft Excel’s “flash fill” function). 
Microsoft’s DeepCoder [Balog 2017] uses IP approaches to learn what programs 
should look like, which can aid in program generation. 

2. Translating natural language into source code is hard, especially since typically 
natural language has many ambiguities, and background knowledge is important. 
However, the approach in [Yin 2017] looks especially promising — it simplifies 
the challenge the underlying algorithm must implement and makes it easier for 
an RNN to discover the recursive structures. 

3. Patch generation to repair existing code is a narrower problem but extremely 
useful, and MIT’s Prophet [Long 2016] has been demonstrated on larger 
codebases.20 

4. It is possible to convert natural language to UML class diagrams and then use 
those diagrams to automatically generate source code stubs and the general 
program structure (see [More 2012], [Sharma 2015], and [Gulia 2016]). This 
approach all by itself is somewhat limited — the source code for the methods and 
functions that make up the body of the code stubs would not be generated by this 
technique, and a programming-level understanding of what to state in natural 
language is required. However, this approach could be fruitful in combination 
with some of the other ASCG techniques discussed in this paper. 

                                                
20 See https://www.kestrel.edu/home/projects/apt/. 

https://www.kestrel.edu/home/projects/apt/
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5. Converting UI sketches into code is promising — both [Beltramelli 2017] and 
[Wilkins 2018] demonstrate some useful prototypes, although they are expressly 
limited in scope.  

6. Creating a higher-level abstraction for source code, instead of trying to directly 
generate text. For example, several of the approaches discussed in this paper use 
ASTs (see [Yin 2017] [Li 2018]). Such higher-level models should make it easier 
for learning systems to identify patterns and create syntactically correct code 
(e.g., ensuring that block ending marks match block beginning marks). Using 
representations that easily model these higher-level structures should make it 
easier to use well-known techniques such as RNNs and could possibly make it 
easier to extend those techniques to deal with the underlying structure of source 
code. 

It should be kept in mind that these results are in some sense dependent on how one 
defines AI. We have expressly excluded (1) general-purpose programming language 
compilers developed using traditional techniques, (2) MDE / MDA, and (3) CASE tools, 
IDEs, and traditional code generators. All of these are in routine use today in developing 
software, but they are not typically included in the term AI. We have also assumed, for this 
paper, that automatically generating source code is the goal; it is possible to develop 
systems where there is no conventional source code (e.g., learn-by-example techniques in 
robotics), but we have excluded that as out-of-scope. 

Given the ever-growing importance of software in all spheres of modern life, we 
expect that research in this area will accelerate in the future and that more effective methods 
will be developed and eventually commoditized. 
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translation of NL rule specification to formal representation as SBVR rule is not 
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with the question of how to make progress on program induction using machine 
learning techniques. In this work, we propose two main ideas: (1) learn to induce 
programs; that is, use a corpus of program induction problems to learn strategies 
that generalize across problems, and (2) integrate neural network architectures with 
search-based techniques rather than replace them. In more detail, we can contrast 
our approach to existing work on differentiable interpreters. In differentiable 
interpreters, the idea is to define a differentiable mapping from source code and 
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inputs to outputs. After observing inputs and outputs, gradient descent can be used 
to search for a program that matches the input-output examples. This approach 
leverages gradient-based optimization, which has proven powerful for training 
neural networks, but each synthesis problem is still solved independently—solving 
many synthesis problems does not help to solve the next problem. We argue that 
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Synthesis (IPS) by re-casting the problem as a big data problem.” 
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means of determining that it is the intended specification, and some (interactive) 
means of translating this high-level specification into a lower-level one which can 
be automatically compiled.” 
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http://www.primaryobjects.com/2013/01/27/using-artificial-intelligence-to-write-self-
modifying-improving-programs/  

Code available at https://github.com/primaryobjects/AI-Programmer 

Extract: “This article describes an experiment to produce an AI program, capable of 
developing its own programs, using a genetic algorithm implementation with self-
modifying and self-improving code… This experiment was a proof-of-concept that 
an AI program could develop its own computer programs that perform a specific 
task. In that regard, it was a success.” 

This experiment uses a genetic algorithm to generate code in Brainf-ck. Brainf-ck 
was intended as a joke language, but it is Turing-complete and only has 8 
instructions, enabling a very simple approach that leads to successful (toy) results. 
That said, the programs the algorithm was asked to generate were extremely simple 
(e.g., “print a short text”), and programs written in the Brainf-ck language are (by 
design) difficult for humans to understand. It is unclear if this approach can be 
scaled to substantial programs, but it is a remarkably direct approach to the problem. 

[Beltramelli 2017] Beltramelli, T. of Ulzard Technologies. “pix2code: Generating Code 
from a Graphical User Interface Screenshot.” 2017-09-17. 
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http://www.primaryobjects.com/2013/01/27/using-artificial-intelligence-to-write-self-modifying-improving-programs/
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Abstract: “Transforming a graphical user interface screenshot created by a designer 
into computer code is a typical task conducted by a developer in order to build 
customized software, websites, and mobile applications. In this paper, we show that 
deep learning methods can be leveraged to train a model end-to-end to automatically 
generate code from a single input image with over 77% of accuracy for three 
different platforms (i.e. iOS, Android and web-based technologies).” 

Quotation: “The process of implementing client-side software based on a Graphical 
User Interface (GUI) mockup created by a designer is the responsibility of 
developers. Implementing GUI code is, however, time-consuming and prevent 
developers from dedicating the majority of their time implementing the actual 
functionality and logic of the software they are building.” 

[Biermann 1985] Biermann, A. W. (1985). “Automatic Programming: A Tutorial on 
Formal Methodologies.” Journal of Symbolic Computation, 1, pp. 119–142. 
https://www.sciencedirect.com/science/article/pii/S0747717185800109 

Abstract: “Ten methodologies for automatic program construction are presented, 
discussed and compared. Some of the techniques generate code from formal input-
output specifications while others work from examples of the target behaviour or 
from natural language input.” 

Extract: “The formal methodologies - have been separated into two categories, 
synthesis from formal specifications and synthesis from examples. In the former 
case, it is assumed a specification is given for the target program with adequate 
domain information so that the target program can be derived in a series of logical 
steps. In the latter case, behavioural examples are given for the desired program, and 
it is inferred by a series of generalization steps. After completing the coverage of 
these formal methodologies, a short section mentions some work on the generation 
of programs from natural language input using artificial intelligence knowledge 
based systems. The various synthesis methodologies will be described by 
illustrating their operation on a single programming problem.” 

Interestingly, the paper uses Common Lisp concepts (such as list, atom, nil (as 
equivalent to the empty list), car, cdr, and cons) but uses a more mathematical (non-
Lisp) syntax for operations (e.g., car(x)). 

[Black 2016] Black, Paul E., Lee Badger, Barbara Guttman, and Elizabeth Fong, 2016, 
Dramatically Reducing Software Vulnerabilities: Report to the White House Office of 
Science and Technology Policy, NISTIR 8151, 
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8151.pdf 

https://www.sciencedirect.com/science/article/pii/S0747717185800109
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on Advances in Neural Information Processing Systems (NIPS), 2016. 
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Shlomo Gevay. “Machine Learning for Finding Bugs: An Initial Report.” 2017 IEEE 
Workshop on Machine Learning Techniques for Software Quality Evaluation 
(MaLTeSQuE). 2017. https://ieeexplore.ieee.org/document/7882012 

Abstract: “Static program analysis is a technique to analyse code without executing 
it, and can be used to find bugs in source code. Many open source and commercial 
tools have been developed in this space over the past 20 years. Scalability and 
precision are of importance for the deployment of static code analysis tools - 
numerous false positives and slow runtime both make the tool hard to be used by 
development, where integration into a nightly build is the standard goal. This 
requires one to identify a suitable abstraction for the static analysis which is 
typically a manual process and can be expensive. In this paper we report our 
findings on using machine learning techniques to detect defects in C programs. We 
use three off-the-shelf machine learning techniques and use a large corpus of 
programs available for use in both the training and evaluation of the results. We 
compare the results produced by the machine learning technique against the Parfait 
static program analysis tool used internally at Oracle by thousands of developers. 
While on the surface the initial results were encouraging, further investigation 
suggests that the machine learning techniques we used are not suitable replacements 
for static program analysis tools due to low precision of the results. This could be 
due to a variety of reasons including not using domain knowledge such as the 
semantics of the programming language and lack of suitable data used in the 
training process.” 

[Chen 2018] Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David 
Duvenaud. Neural Ordinary Differential Equations.  

Abstract: “We introduce a new family of deep neural network models. Instead of 
specifying a discrete sequence of hidden layers, we parameterize the derivative of 
the hidden state using a neural network. The output of the network is computed 
using a blackbox differential equation solver. These continuous-depth models have 
constant memory cost, adapt their evaluation strategy to each input, and can 
explicitly trade numerical precision for speed. We demonstrate these properties in 
continuous-depth residual networks and continuous-time latent variable models. We 
also construct continuous normalizing flows, a generative model that can train by 
maximum likelihood, without partitioning or ordering the data dimensions. For 
training, we show how to scalably backpropagate through any ODE solver, without 
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access to its internal operations. This allows end-to-end training of ODEs within 
larger models.” 

[Cheng 2018] Cheng, John. Artificial Intelligence and Auto-generation of Code. 2018-05-
13. Bachelor’s Thesis, Degree Program in Business Information Technology, Haaga-
Helia University of Applied Sciences. 

Abstract: “… The idea is to feed the machine with a design mockup and based on 
that, it will be able to recognize and return a code based on the different components 
and layout found. By reading this thesis, neophytes will be able to understand the 
different steps needed to explore a solution with deep explanation of what machine 
learning is and how to use it for visual recognition. Furthermore, as machines are 
extremely good at reproducing, a way to facilitate teams transitions in projects is 
also detailed. Finally, a solution is provided where a design will be fed to the 
Artificial Intelligence and an HTML code is received. Being a subject relatively 
new for the time of the thesis, the material and help to implement the final solution 
are limited. That is why, even incomplete, it should be considered as a boilerplate to 
continue working on to further improve it.” 

This student attempted to do something extremely ambitious as a Bachelor’s project, 
and it did not work out. The work here might lead to further work, but the results 
within the time available were not successful. “After going through the 
implementation part, the solution is, unfortunately, not a working one. … [I] would 
say that my proof of concept is not complete but can be used as a boilerplate to 
explore new ways, new leads.” The document also points to [Wilkins 2018] and 
[Beltramelli 2017]. 

[Christakopoulou 2017] Christakopoulou, Konstantina (University of Minnesota) and 
Adam Tauman Kalai (Microsoft Research), “Glass-Box Program Synthesis: A Machine 
Learning Approach,” arXiv:1709.08669v1 [cs.LG] 25 Sep 2017 

Abstract: “Recently proposed models which learn to write computer programs from 
data use either input/output examples or rich execution traces. Instead, we argue that 
a novel alternative is to use a glass-box loss function, given as a program itself that 
can be directly inspected. Glass-box optimization covers a wide range of problems, 
from computing the greatest common divisor of two integers, to learning-to-learn 
problems. In this paper, we present an intelligent search system which learns, given 
the partial program and the glass-box problem, the probabilities over the space of 
programs. We empirically demonstrate that our informed search procedure leads to 
significant improvements compared to brute-force program search, both in terms of 
accuracy and time. For our experiments we use rich context free grammars inspired 
by number theory, text processing, and algebra. Our results show that (i) performing 
4 rounds of our framework typically solves about 70% of the target problems, (ii) 
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our framework can improve itself even in domain agnostic scenarios, and (iii) it can 
solve problems that would be otherwise too slow to solve with brute-force search.” 

[Danilchenko 2011] Danilchenko, Yuri B., Automatic Code Generation Using Artificial 
Intelligence, 2011-07-11. Committee chair Richard Fox, Committee members Wei Hao, 
Jeff Warn, and Frank Braun, Director Maureen Doyle, Thesis for Master of Science in 
Computer Science at Northern Kentucky University. 

Abstract: “Automatic Code Generation (ACG) allows software engineers to create 
more concise, maintainable, and reusable solutions, ultimately improving their 
productivity. Despite the significant benefits and the profound economic impact of 
ACG in the software development field, it still often requires substantial input and 
interaction from humans. The presented Automatic Coder using Artificial 
Intelligence (ACAI) system uses a novel approach to solve fully automated code 
generation in routine programming domains. Given high level user goals and 
preferences, a library of abstract programs, and a library of generic code 
components, ACAI uses a combination of Case-Based Reasoning, Routine Design, 
and Template-Based Programming approaches to generate complete Java programs 
that satisfy user requirements.” 

[Danilchenko 2012] Danilchenko, Yuri, and Richard Fox (Department of Computer 
Science, Northern Kentucky University). Automated Code Generation Using Case-Based 
Reasoning, Routine Design and Template-Based Programming. 

Abstract: “Automated code generation is the process whereby a computer program 
takes user specifications in some form and produces a program as output. 
Automated code generation can be the process undertaken by a compiler, which 
generates an executable program from a source program, but it also applies to the 
situation where the input is a task described at some level of abstraction and the 
output is a program that can perform that task. Several different approaches have 
been utilized to varying degrees of success to automate code generation, including 
Case-Based Reasoning, formal methods and evolutionary algorithms. In this paper, 
a system is introduced which combines Case-Based Reasoning, Routine Design and 
Template-Based Programming to generate programs that handle straight-forward 
database operations. This paper presents the approach taken and offers some brief 
examples.” 

Extracts and comments: This paper presents the “Automated Coder using Artificial 
Intelligence (ACAI) system.” ACAI accepts the goal (text describing the query or 
queries to be answered) and specifications for how to achieve the goal (“e.g. 
computational complexity, memory and disk usage, form of input, form of output”). 
A case must be retrieved from a library of cases (plans described using XML); these 
must be created by developers. The system generates Java source code. Currently, 
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“ACAI only solves database-type problems” focusing on the medical database 
domain, though the authors argue that it can be expanded beyond this. It has only 
demonstrated a modest ability to combine plans to produce relatively simple 
database queries. A key advantage is that users do not need to learn SQL. 

This is based on the earlier [Danilchenko 2011]. 

[Desai 2016] Desai, Aditya, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey 
Karkare, Mark Marron, and Sailesh R Subhajit Roy. “Program Synthesis Using Natural 
Language.” 2016 IEEE/ACM 38th IEEE International Conference on Software 
Engineering. 

Abstract: “Interacting with computers is a ubiquitous activity for millions of people. 
Repetitive or specialized tasks often require creation of small, often one-off, 
programs. End-users struggle with learning and using the myriad of domain-specific 
languages (DSLs) to effectively accomplish these tasks. We present a general 
framework for constructing program synthesizers that take natural language (NL) 
inputs and produce expressions in a target DSL. The framework takes as input a 
DSL definition and training data consisting of NL/DSL pairs. From these it 
constructs a synthesizer by learning optimal weights and classifiers (using NLP 
features) that rank the outputs of a keyword-programming based translation. We 
applied our framework to three domains: repetitive text editing, an intelligent 
tutoring system, and flight information queries. On 1200+ English descriptions, the 
respective synthesizers rank the desired program as the top-1 and top- 3 for 80% and 
90% descriptions respectively.” 

Note: This is from Microsoft Research Redmond and IIT Kanpur. 

[Fife 1987] Fife, Dennis W., Kevin Campbell, John Chludzinki, Nelson Corcoran, Carlos 
Gonzalez, J. Bret Michael, Edgar Sibley, David Wheeler, and Christine Youngblut, 
October 1987, Evaluation of Computer-Aided System Design Tools for SDI Battle 
Management/C3 Architecture Development, IDA Paper P-2062, Approved for public 
release, distribution unlimited. 

Abstract: “This IDA Paper was prepared at the request of the Strategic Defense 
Initiative Organization. The paper documents the findings of an evaluation on the 
capabilities of certain computer software/computer-aided software engineering 
(CASE) tools to provide computer-aided graphic design of Battle Management/C3 
for the SDIO. Each tool (of five selected on the basis of the best available at this 
time) was installed at IDA. After training by vendor tool staff, an IDA team, using a 
hands-on design exercise determined the merits of the tools for SDI application. A 
comparative summary of the tools is given relative to envisaged SDI requirements 
and an extensive questionnaire is answered for each.” 
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[Gaunt 2016] Gaunt, Alexander L., Marc Brockschmidt, Rishabh Singh, Nate Kushman, 
Pushmeet Kohli, Jonathan Taylor, and Daniel Tarlow. “Terpret: A Probabilistic 
Programming Language for Program Induction.” CoRR, abs/1608.04428, 2016. URL 
http://arxiv.org/abs/1608.04428. 

[Gershgorn 2017] Gershgorn, Dave. “Microsoft’s AI Is Learning to Write Code by Itself, 
Not Steal It.” 2017-03-01. https://qz.com/920468/artificial-intelligence-created-by-
microsoft-and-university-of-cambridge-is-learning-to-write-code-by-itself-not-steal-it/ 

This news article summarizes [Balog 2017], saying that “Microsoft and Cambridge 
built an algorithm capable of writing code that would solve simple math problems. 
The algorithm, named DeepCoder, would be able to augment its own ability by also 
looking at potential combinations of code for how a problem could be solved.” 

[Gulia 2016] Gulia, Sarita, and Tanupriya Choudhury, “An Efficient Automated Design 
to Generate UML Diagram From Natural Language Specifications,” 2016, 2016 6th 
International Conference - Cloud System and Big Data Engineering (Confluence). 

Abstract: “The foremost problem that arises in the Software Development Cycle is 
during the Requirements specification and analysis. Errors that are encountered 
during the first phase of the cycle migrate to other phases too which in turn results 
in the most costly process than the original specified process. The reason is that the 
specifications of software requirements are termed in the Nature Language Format. 
One can easily transform the requirements specified into computer model using 
UML. To minimize the errors that arise in the existing system, we have proposed a 
new technique that enhances the generation of UML models through Natural 
Language requirements, which can easily provide automatic assistance to the 
developers. The main aim of our paper is to focus on the production of Activity 
Diagram and Sequence Diagram through Natural Language Specifications. Standard 
POS tagger and parser analyze the input i.e., requirements in English language 
given by the users and extract phrases, activities, etc. from the text specifies. The 
technique is beneficial as it reduces the gap between informal natural language and 
the formal modeling language. The input is the requirements laid down by the users 
in English language. Some stages like pre-processing, part of speech (POs), tagging, 
parsing, phrase identification and designing of UML diagrams occur along with the 
input. The application and its framework is developed in Java and it is tested on by 
implementing on a few technical documents.” 

[Gulwani 2011] Gulwani, Sumit, “Automating String Processing in Spreadsheets Using 
Input-Output Examples”, POPL, 2011, https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/12/popl11-synthesis.pdf 

Abstract: “We describe the design of a string programming/expression language that 
supports restricted forms of regular expressions, conditionals and loops. The 

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/popl11-synthesis.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/popl11-synthesis.pdf
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language is expressive enough to represent a wide variety of string manipulation 
tasks that end-users struggle with. We describe an algorithm based on several novel 
concepts for synthesizing a desired program in this language from input-output 
examples. The synthesis algorithm is very efficient taking a fraction of a second for 
various benchmark examples. The synthesis algorithm is interactive and has several 
desirable features: it can rank multiple solutions and has fast convergence, it can 
detect noise in the user input, and it supports an active interaction model wherein 
the user is prompted to provide outputs on inputs that may have multiple 
computational interpretations. 
The algorithm has been implemented as an interactive add-in for Microsoft Excel 
spreadsheet system. The prototype tool has met the golden test - it has synthesized 
part of itself, and has been used to solve problems beyond author’s imagination.” 

[Gulwani 2012] Sumit Gulwani, William R. Harris, and Rishabh Singh, 
“Spreadsheet Data Manipulation Using Examples,” Communications of the ACM, 
August 2012, Vol. 55, no. 8. https://people.csail.mit.edu/rishabh/papers/cacm12.pdf 

Abstract: “Millions of computer end users need to perform tasks over large 
spreadsheet data, yet lack the programming knowledge to do such tasks 
automatically. We present a programming by example methodology that allows end 
users to automate such repetitive tasks. Our methodology involves designing a 
domain-specific language and developing a synthesis algorithm that can learn 
programs in that language from user-provided examples. We present instantiations 
of this methodology for particular domains of tasks: (a) syntactic transformations of 
strings using restricted forms of regular expressions, conditionals, and loops, (b) 
semantic transformations of strings involving lookup in relational tables, and (c) 
layout transformations on spreadsheet tables. We have implemented this technology 
as an add-in for the Microsoft Excel Spreadsheet system and have evaluated it 
successfully over several benchmarks picked from various Excel help forums.” 

Extract: “We then develop the following: 

Domain-specific language: We design a domain-specific language L that is 
expressive enough to capture several real-world tasks in the domain, but also 
restricted enough to enable efficient learning from examples. 

Data structure for representing consistent programs: The number of programs in L 
that are consistent with a given set of input–output examples can be huge. We 
define a data structure D based on a version-space algebra to succinctly represent a 
large set of such programs. 

Algorithm for synthesizing consistent programs: Our synthesis algorithm for 
language L applies two key procedures: (i) Generate learns the set of all programs, 

https://people.csail.mit.edu/rishabh/papers/cacm12.pdf
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represented using data structure D, that are consistent with a given single example. 
(ii) Intersect intersects these sets (each corresponding to a different example). 

Ranking: We develop a scheme that ranks programs, preferring programs that are 
more general. Each ranking scheme is inspired by Occam’s razor, which states that 
a smaller and simpler explanation is usually the correct one. We define a partial 
order relationship between programs to compare them. Any partial order can be 
used that efficiently orders programs represented in the version-space algebra used 
by the data structure D. Such an order can be applied to efficiently select the top-
ranked programs from among a set represented using D. The ranking scheme can 
also take into account any test inputs provided by the user (i.e., new additional 
inputs on which the user may execute a synthesized program). A program that is 
undefined on any test input or generates an output whose characteristics are 
different from that of training outputs can be ranked lower.” 

This paper builds on [Gulwani 2011]. 

[Gulwani 2015] Gulwani, Sumit, José Hernández-Orallo, Emanuel Kitzelmann, Stephen 
H. Muggleton, Ute Schmid, and Benjamin Zorn, “Inductive Programming Meets the Real 
World,” Communications of the ACM (CACM), November 2015, Vol. 58 No. 11, 
https://dl.acm.org/citation.cfm?id=2838899.2736282 

[Hellendoorn 2017] Hellendoorn, Vincent J., and Premkumar Devanbu. “Are Deep 
Neural Networks the Best Choice for Modeling Source Code?” ESEC/FSE’17, 
September 4–8, 2017, Paderborn, Germany. 

Abstract: “Current statistical language modeling techniques, including deeplearning 
based models, have proven to be quite effective for source code. We argue here that 
the special properties of source code can be exploited for further improvements. In 
this work, we enhance established language modeling approaches to handle the 
special challenges of modeling source code, such as: frequent changes, larger, 
changing vocabularies, deeply nested scopes, etc. We present a fast, nested language 
modeling toolkit specifically designed for software, with the ability to add & 
remove text, and mix & swap out many models. Specifically, we improve upon 
prior cache-modeling work and present a model with a much more expansive, multi-
level notion of locality that we show to be well-suited for modeling software. We 
present results on varying corpora in comparison with traditional N-gram, as well as 
RNN, and LSTM deep-learning language models, and release all our source code 
for public use. Our evaluations suggest that carefully adapting N-gram models for 
source code can yield performance that surpasses even RNN and LSTM based deep-
learning models.” 
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[Hardesty 2015] Hardesty, Larry, “Probabilistic Programming Does in 50 Lines of Code 
What Used to Take Thousands,” 2015-04-13, pys.org, https://phys.org/news/2015-04-
probabilistic-lines-code-thousands.html 

[Imam 2014] Imam, Ayad Tareq, Thamer Rousan, and Shadi Aljawarneh (all Faculty of 
IT; Al-Isra University Amman; Jordan), “An Expert Code Generator using Rule-Based 
and Frames Knowledge Representation Techniques,” 2014 5th International Conference 
on Information and Communication Systems (ICICS) 

Abstract: “This paper aims to demonstrate the development of an expert code 
generator using rule-based and frames knowledge representation techniques (ECG-
RF). The ECG-RF system presented in this paper is a passive code generator that 
carries out the task of automatic code generation in fixed structure software. To 
develop an ECG-RF system, the artificial intelligence (AI) of rule-based system and 
frames knowledge representation techniques was applied to a code generation task. 
ECG-RF fills a predefined frame of a certain fixed-structure program with code 
chunks retrieved from ECG-RF’s knowledge base. The filling operation is achieved 
by ECG-RF’s inference engine and is guided by the information collected from the 
user via a graphic user interface (GUI). In this paper, an ECG-RF system for 
generating a device driver program is presented and implemented with VBasic 
software. The results show that the ECG-RF design concept is reasonably reliable.” 

Notes: The code/data collection engine “begins by loading the frame of the SW to 
be filled, searching for proper code fragments or data, and then assigns the selected 
code fragments or data to a slot in the SW frame. The search process is guided by 
the attributes of the slot to be filled. These attributes are collected one by one…. 
The collection is achieved via a wizard technique, which asks the user a question 
and collects the answer. This answer is used to select the next question that relates 
to a new property in order to accumulate properties. This accumulation of properties 
is an implementation of the forward chaining method... For testing purposes, device 
driver software has been selected as a case study in this research, and for simplicity 
the DOS device driver will be used.” Assembly language is generated. 

[Jaderberg 2019] “Human-Level Performance in 3D Multiplayer Games with Population-
Based Reinforcement Learning.” Science 31 May 2019: Vol. 364, Issue 6443, pp. 859–
865 DOI: 10.1126/science.aau6249. 

Abstract: “Reinforcement learning (RL) has shown great success in increasingly 
complex single-agent environments and two-player turn-based games. However, the 
real world contains multiple agents, each learning and acting independently to 
cooperate and compete with other agents. We used a tournament-style evaluation to 
demonstrate that an agent can achieve human-level performance in a three-
dimensional multiplayer first-person video game, Quake III Arena in Capture the 
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Flag mode, using only pixels and game points scored as input. We used a two-tier 
optimization process in which a population of independent RL agents are trained 
concurrently from thousands of parallel matches on randomly generated 
environments. Each agent learns its own internal reward signal and rich 
representation of the world. These results indicate the great potential of multiagent 
reinforcement learning for artificial intelligence research.” 

[Karpathy 2015] Karpathy, Andrej. “The Unreasonable Effectiveness of Recurrent 
Neural Networks.” May 21, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

Extract: “There’s something magical about Recurrent Neural Networks (RNNs). I 
still remember when I trained my first recurrent network…Within a few dozen 
minutes of training my first baby model (with rather arbitrarily-chosen 
hyperparameters) started to generate very nice looking descriptions of images that 
were on the edge of making sense. Sometimes the ratio of how simple your model is 
to the quality of the results you get out of it blows past your expectations… I’m 
training RNNs all the time and I’ve witnessed their power and robustness many 
times, and yet their magical outputs still find ways of amusing me. This post is 
about sharing some of that magic with you.” 

[Kimber 2012] Kimber, Timothy, Learning Definite and Normal Logic Programs by 
Induction on Failure, PhD dissertation, Imperial College London, Department of 
Computing, 2012, https://spiral.imperial.ac.uk:8443/handle/10044/1/9961 

Abstract: “This thesis presents two novel inductive logic programming (ILP) 
approaches, based on the notion of a connected theory. A connected theory contains 
clauses that depend on one another, either directly or via clauses in the background 
knowledge. Generalisation of such a theory is proved to be a sound and complete 
method for learning definite ILP hypotheses. The Induction on Failure (IOF) proof 
procedure, based on the connected theory generalisation method, adds secondary 
examples into the hypothesis, and generates auxiliary clauses to explain them. These 
concepts, novel to IOF, address the issues of incompleteness present in previous 
definite ILP methods. 

The concept of the connected theory is also applied to the non-monotonic, normal 
program setting. Thus, the method of generalisation of a normal connected theory is 
presented. Fundamental to this is the assertion that a partial non-monotonic 
hypothesis must include both positive and negative information, which the general 
hypothesis should preserve. This has resulted in, as far as the author is aware, the 
most complete semantic characterisation available of non-monotonic ILP using a 
bridge formula. It is proved that generalisation of such a formula to a set of 
completed definitions is a sound method of generating normal program hypotheses. 
In the course of establishing a completeness result for this latter approach, the 
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semantics of the supported consequences of a normal program are defined, and the 
support tree method is presented and shown to be a sound and complete proof 
procedure for supported consequences. Using these results, it is shown that, for 
functionfree programs, any correct hypothesis for which the examples are supported 
consequences of the learned program can be derived via a normal connected 
theory.” 

[Klein 2015a] Klein, John, 2015-05-11, “Model Driven Engineering: Automatic Code 
Generation and Beyond,” Software Engineering Institute (SEI) Blog, 
https://insights.sei.cmu.edu/sei_blog/2015/05/model-driven-engineering-automatic-code-
generation-and-beyond.html 

[Klein 2015b] Klein, John, Harry Levinson, and Jay Marchetti, 2015-05, “Model Driven 
Engineering: Automatic Code Generation and Beyond,” Software Engineering Institute 
(SEI), Technical Report CMU/SEI-2015-TN-005, 
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435414 

Abstract: “Increasing consideration of model-driven engineering (MDE) tools for 
software development efforts means that acquisition executives must more often 
deal with the following challenge: Vendors claim that by using MDE tools, they can 
generate software code automatically and achieve high developer productivity. 
However, MDE consists of more than code generation tools; it is also a software 
engineering approach that can affect the entire lifecycle of a system from 
requirements gathering through sustainment. This report focuses on the application 
of MDE tools for automatic code generation when acquiring systems built using 
these software development tools and processes. The report defines some 
terminology used by MDE tools and methods, emphasizing that MDE consists of 
both tools and methods that must align with overall acquisition strategy. Next, it 
discusses how the use of MDE for automatic code generation affects acquisition 
strategy and introduces new risks to the program. It then offers guidance on 
selecting, analyzing, and evaluating MDE tools in the context of risks to an 
organization’s acquisition effort throughout the system lifecycle. Appendices 
provide a questionnaire that an organization can use to gather information about 
vendor tools along with criteria for evaluating tools mapped to the questionnaire that 
relate to acquisition concerns.” 

The introduction states that, “The simple answer might be, “yes, the state of the 
practice can achieve productivity rates of thousands of function points and millions 
of lines of code per person-month using MDE tools for automatic code generation.” 
The complicated reality is that MDE consists of more than code generation tools; it 
is a software engineering approach that can impact the entire lifecycle from 
requirements gathering through sustainment. While one can make broad 
generalizations about these methods and tools, it is more useful to consider them in 

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435414
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the context of a particular system acquisition. Aligning MDE methods and tool 
capabilities with the system acquisition strategy can improve system quality, reduce 
time to field, and reduce sustainment cost. On the other hand, when MDE methods 
and tools do not align with the acquisition strategy, using them can result in 
increased risk and cost in development and sustainment. 

We use [model-driven engineering (MDE)] to refer descriptively to a software 
development approach that treats models as the primary artifacts created and used 
by software lifecycle processes…. There is no single model of a system; instead, 
there can (and should) be multiple models. … we have to maintain consistency 
between models and the implementation, consistency among the models across 
tasks, and consistency among the models throughout the lifecycle to correctly and 
completely represent our system. Each model is represented using a modeling 
language that has a graphical representation, a textual representation, or both. 
Typical modeling languages include the standards-based Unified Modeling 
Language (UML) and Architecture Analysis and Design Language (AADL) and 
proprietary languages such as the Integranova Model Execution System (M.E.S.).” 

Note that terms such as “artificial intelligence” and “machine learning” never occur 
in this paper and that the term “knowledge” always refers to organizational 
knowledge. 

[Kneuss 2015] Kneuss, E., M. Koukoutos, and V. Kuncak. “Deductive Program Repair.” 
In Computer-Aided Verification: 27th International Conference, CAV 2015 Proceedings 
Part II. 

[Li 2018] Li, Jian, Yue Wang, Michael R. Lyu, and Irwin King, “Code Completion with 
Neural Attention and Pointer Networks,” (The Chinese University of Hong Kong, China). 
attenarXiv:1711.09573v2 [cs.CL] 14 May 2018 

Abstract: “Intelligent code completion has become an essential research task to 
accelerate modern software development. To facilitate effective code completion for 
dynamically-typed programming languages, we apply neural language models by 
learning from large codebases, and develop a tailored attention mechanism for code 
completion. However, standard neural language models even with attention 
mechanism cannot correctly predict the out-of-vocabulary (OoV) words that restrict 
the code completion performance. In this paper, inspired by the prevalence of 
locally repeated terms in program source code, and the recently proposed pointer 
copy mechanism, we propose a pointer mixture network for better predicting OoV 
words in code completion. Based on the context, the pointer mixture network learns 
to either generate a withinvocabulary word through an RNN component, or 
regenerate an OoV word from local context through a pointer component. 
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Experiments on two benchmarked datasets demonstrate the effectiveness of our 
attention mechanism and pointer mixture network on the code completion task.” 

Extracts: 

“Intelligent code completion is one of the most useful features in IDEs, which 
suggests next probable code tokens... Traditionally, code completion relies heavily 
on compile-time type information... Thus, it works well for statically-typed 
languages such as Java. Yet code completion is harder and less supported for 
dynamically-typed languages like JavaScript and Python, due to the lack of type 
annotations.” 

“To render effective code completion for dynamically-typed languages, recently, 
researchers turn to learning-based language models... In particular, neural language 
models such as Recurrent Neural Networks (RNNs) can capture sequential 
distributions and deep semantics, hence become very popular. However, these 
standard neural language models are limited by the so-called hidden state 
bottleneck: all the information about current sequence is compressed into a fixed-
size vector. The limitation makes it hard for RNNs to deal with long-range 
dependencies, which are common in program source code such as a class identifier 
declared many lines before it is used.” 

“Attention mechanism [Bahdanau et al., 2014] provides one solution to this 
challenge. With attention, neural language models learn to retrieve and make use of 
relevant previous hidden states, thereby increasing the model’s memorization 
capability and providing more paths for back-propagation. To deal with long-range 
dependencies in code completion, we develop a tailored attention mechanism which 
can exploit the structure information on program’s abstract syntax tree (AST)...” 

“But even with attention, there is another critical issue called (the0 unknown word 
problem... a common practice is to build the vocabulary with only K most frequent 
words in the corpus... In code completion, simply recommending an (Unknown) 
token offers no help to the developers... For our code completion task, we observe 
that when writing programs, developers tend to repeat locally... when predicting 
such unknown words, our model can learn to choose one location in local context 
and copy the word at that location as our prediction.” 

“In this paper, to facilitate effective code completion, we propose a pointer mixture 
network, which can predict next word by either generating one from the global 
vocabulary or copying a word from the local context. For the former, we apply a 
standard RNN with attention, which we call the global RNN component. For the 
latter, we employ a pointer network which we call the local pointer component. 
Actually the two components share the same RNN architecture and attention scores. 
Our pointer mixture network is a weighted combination of the two components. At 
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each prediction, a switcher is learned based on the context information, which can 
guide the model to choose one component for generating the next word. In this way, 
our model learns when and where to copy an OoV word from the local context as 
the final prediction.” 

“The main contributions of this work are as follows: 

We propose a pointer mixture network for better predicting OoV words in code 
completion, which learns to generate next word from either the global vocabulary or 
the local context. 

 We develop an attention mechanism for code completion, which makes use of the 
AST structure information (specially, the parent-children information). 

We evaluate our models on two benchmarked datasets (JavaScript and Python). The 
experimental results show great improvements upon the state-of-the-arts (sic)” 

[Laird 2017] Laird, John E., Kevin Gluck, John Anderson, Kenneth D. Forbus, Odest 
Chadwicke Jenkins, Christian Lebiere, Dario Salvucci, Matthias Scheutz, Andrea 
Thomaz, Greg Trafton, Robert E. Wray, Shiwali Mohan, and James R. Kirk, “Interactive 
Task Learning,” July/August 2017, IEEE Intelligent Systems, IEEE Computer Society, 
DOI 1541-1672/17, 
http://web.eecs.umich.edu/~soar/sitemaker/docs/pubs/Laird_et_al_InteractiveTaskLearni
ng_IEEE_IntelligentSystems_2017.pdf 

Abstract: “In interactive task learning [(ITL)], an agent actively tries to learn the 
actual definition of a task through natural interaction with a human instructor, not 
just how to perform a task better.” 

Extract: This paper attempts “to provide an overview of the landscape of interactive 
task learning, including its definition, the associated desiderata for evaluating future 
progress, a review of previous research in related areas, and potential application 
areas. Interactive task learning is a constellation of approaches and research 
problems that if realized, holds the promise of dramatically changing the way we 
develop and extend the capabilities of intelligent agents. No longer will we need to 
rely on programmers to anticipate all of the potential tasks that our agents will 
perform.” 

Note that this is not a demonstration of some completed research, but an argument 
for the establishment of a subfield. 

[Ling 2016] Ling, Wang, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, 
Andrew Senior, Fumin Wang, and Phil Blunsom. “Latent Predictor Networks for Code 
Generation.” In Proceedings of the 54th Annual Meeting of the Association for 
Computational Linguistics, 2016. https://arxiv.org/abs/1603.06744 

http://web.eecs.umich.edu/%7Esoar/sitemaker/docs/pubs/Laird_et_al_InteractiveTaskLearning_IEEE_IntelligentSystems_2017.pdf
http://web.eecs.umich.edu/%7Esoar/sitemaker/docs/pubs/Laird_et_al_InteractiveTaskLearning_IEEE_IntelligentSystems_2017.pdf
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Abstract: “Many language generation tasks require the production of text 
conditioned on both structured and unstructured inputs. We present a novel neural 
network architecture which generates an output sequence conditioned on an 
arbitrary number of input functions. Crucially, our approach allows both the choice 
of conditioning context and the granularity of generation, for example characters or 
tokens, to be marginalised, thus permitting scalable and effective training. Using 
this framework, we address the problem of generating programming code from a 
mixed natural language and structured specification. We create two new data sets 
for this paradigm derived from the collectible trading card games Magic the 
Gathering and Hearthstone. On these, and a third preexisting corpus, we 
demonstrate that marginalising multiple predictors allows our model to outperform 
strong benchmarks.” 

[Long 2016] Long, Fan, and Martin Rinard. “Automatic Patch Generation by Learning 
Correct Code.” 2016. MIT CSAIL. https://people.csail.mit.edu/fanl/papers/prophet-
popl16.pdf 

Abstract: “We present Prophet, a novel patch generation system that works with a 
set of successful human patches obtained from open-source software repositories to 
learn a probabilistic, application-independent model of correct code. It generates a 
space of candidate patches, uses the model to rank the candidate patches in order of 
likely correctness, and validates the ranked patches against a suite of test cases to 
find correct patches. Experimental results show that, on a benchmark set of 69 real-
world defects drawn from eight open-source projects, Prophet significantly 
outperforms the previous state-of-the-art patch generation system.” 

Extract: “We present Prophet, a new generate-and-validate patch generation system 
for repairing defects in large, real-world applications. To the best of our knowledge, 
Prophet is the first system to learn a probabilistic model of correct code. Prophet 
uses this model to automatically generate correct patches that repair defects in 
incorrect applications… Generate-and-validate systems start with a program and a 
suite of test cases, at least one of which exposes a defect in the program. They then 
generate a space of candidate patches and search this space to find plausible patches 
that produce correct outputs for all test cases in the test suite. Unfortunately, the 
presence of plausible but incorrect patches (which produce correct outputs for all of 
the test cases in the test suite but incorrect outputs for other inputs) has complicated 
the ability of previous generate-and-validate systems to find correct patches within 
the (potentially quite large) space of plausible but incorrect patches. Prophet uses its 
learned model of correct code to rank the patches in its search space, with the goal 
of obtaining a correct patch as the first (or one of the first few) patches to validate.” 
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[Memon 2001] Memon, Atif M., Martha E. Pollack, and Mary Lou Soffa. “Hierarchical 
GUI Test Case Generation Using Automated Planning.” IEEE Transactions on Software 
Engineering, Vol. 27, No. 2, February 2001. 

Abstract: “The widespread use of GUIs for interacting with software is leading to 
the construction of more and more complex GUIs. With the growing complexity 
come challenges in testing the correctness of a GUI and its underlying software. We 
present a new technique to automatically generate test cases for GUIs that exploits 
planning, a well-developed and used technique in artificial intelligence. Given a set 
of operators, an initial state, and a goal state, a planner produces a sequence of the 
operators that will transform the initial state to the goal state. Our test case 
generation technique enables efficient application of planning by first creating a 
hierarchical model of a GUI based on its structure. The GUI model consists of 
hierarchical planning operators representing the possible events in the GUI. The test 
designer defines the preconditions and effects of the hierarchical operators, which 
are input into a plan-generation system. The test designer also creates scenarios that 
represent typical initial and goal states for a GUI user. The planner then generates 
plans representing sequences of GUI interactions that a user might employ to reach 
the goal state from the initial state. We implemented our test case generation 
system, called Planning Assisted Tester for grapHical user interface Systems 
(PATHS) and experimentally evaluated its practicality and effectiveness. We 
describe a prototype implementation of PATHS and report on the results of 
controlled experiments to generate test cases for Microsoft's WordPad.” 

Notes: This approach is designed to create test cases, not application code. 
However, test cases are often created by writing code, so technically this is a way to 
replace writing code. 

[Moderez 2016] Molderez, Tim, and Coen De Roover, “Automated Generalization and 
Refinement of Code Templates with EKEKO/X,” 2016, In 2016 IEEE 23rd International 
Conference on Software Analysis, Evolution, and Reengineering, 
https://ieeexplore.ieee.org/abstract/document/7476695 

Abstract: “Code templates are an intuitive means to specify source code snippets of 
interest, such as all instances of a bug, groups of snippets that need to be refactored 
or transformed, or instances of design patterns. While intuitive, it is not always 
straightforward to write a template that produces only the desired matches. A 
template could produce either more snippets than desired, or too few. To assist the 
users of EKEKO/X, our template-based search and transformation tool for Java, we 
have extended it with two components: The first is a suite of mutation operators that 
simplifies the process of modifying templates. The second is a system that can 
automatically suggest a sequence of mutations to a given template, such that it 
matches only with a set of desired snippets. In this tool paper, we highlight the key 

https://ieeexplore.ieee.org/abstract/document/7476695
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design decisions in implementing these two components of EKEKO/X, and 
demonstrate their use by walking through an example sequence of mutations 
suggested by the system.” 

Notes: Their search-based system can “automatically generalize and refine a 
template group, such that it matches only with a given set of desired code snippets. 
This system is based on a single objective genetic search algorithm, and it makes 
use of our suite of mutation operators…. the [genetic] algorithm consists of a loop 
that ‘evolves’ a set of template groups, with the aim of approaching a solution 
template, with a fitness value of 1. The fitness value indicates ‘how good’ a 
template group is…” 

[More 2012] More, Priyanka, and Rashmi Phalnikar. “Generating UML Diagrams from 
Natural Language Specifications.” International Journal of Applied Information Systems, 
Volume 1, No. 8, April 2012.  

Abstract: “The process of generating UML Diagrams from natural language 
specification is a highly challenging task. This paper proposes a method and tool to 
facilitate the requirements analysis process and extract UML diagrams from textual 
requirements using natural language processing (NLP) and Domain Ontology 
techniques. Requirements engineers analyze requirements manually to understand 
the scope of the system. The time spent on the analysis and the low quality of 
human analysis justifies - the need of a tool for better understanding of the system. 
“Requirement analysis to Provide Instant Diagrams (RAPID)” is a desktop tool to 
assist requirements analysts and Software Engineering students to analyze textual 
requirements, finding core concepts and its relationships, and extraction UML 
diagrams. The evaluation of RAPID system is in the process and will be conducted 
through two forms of evaluation, experimental and expert evaluation.” 

Comments: This paper describes RAPID, which examines text to identify classes, 
their attributes, and their relationships and use the info to create a UML class 
diagram. The approach is not very flexible, and it is limited in what it can produce. 
It is possible to generate some source code from a UML class diagram. 

[Murali 2018] Murali, Vijayaraghavan, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. 
“Neural Sketch Learning for Conditional Program Generation.” ICLR 2018. 2018. 
https://arxiv.org/abs/1703.05698 

Abstract: “We study the problem of generating source code in a strongly typed, 
Java-like programming language, given a label (for example a set of API calls or 
types) carrying a small amount of information about the code that is desired. The 
generated programs are expected to respect a “realistic” relationship between 
programs and labels, as exemplified by a corpus of labeled programs available 
during training. Two challenges in such conditional program generation are that the 
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generated programs must satisfy a rich set of syntactic and semantic constraints, and 
that source code contains many low-level features that impede learning. We address 
these problems by training a neural generator not on code but on program sketches, 
or models of program syntax that abstract out names and operations that do not 
generalize across programs. During generation, we infer a posterior distribution over 
sketches, then concretize samples from this distribution into type-safe programs 
using combinatorial techniques. We implement our ideas in a system for generating 
API-heavy Java code, and show that it can often predict the entire body of a method 
given just a few API calls or data types that appear in the method.” 

Note: This describes the BAYOU system, publicly available at 
https://github.com/capergroup/bayou under the Apache 2.0 open source software 
license. 

[Narawita 2016] Narawita, Chamitha Ramal, and Kaneeka Vidanage (both Department of 
Computer Science, Informatics Institute of Technology, Sri Lanka), “UML Generator – 
An Automated System for Model Driven Development,” 2016 International Conference 
on Advances in ICT for Emerging Regions (ICTer), pp. 250–256. 

Abstract: “This research mainly focused on automation of Unified Modeling 
Language (UML) diagrams from the analyzed requirement text using Natural 
Language Processing (NLP). The proposed system is an efficient and accurate way 
to obtain elements of the use case and class diagrams from proposed methods. This 
research mainly focuses on the design phase of a software. Nowadays everybody 
needs a quick and reliable service. It was needed to have some sort of quick, 
accurate and intelligent software for generating UML based documentations to save 
time and budget of both the user and system analyst.” 

Comments: This UML Generator “generates use case and class diagram by 
analyzing the input text.” It uses SharpNLP to do natural language processing, 
coupled with a simple ML approach to identify the key features. It was tested “with 
more than twenty (20) scenarios and it has an accuracy level of around 70%.” This 
was an undergraduate research project. 

[Nelson 2006] Nelson, Graham. 2006-04-10. “Natural Language, Semantic Analysis and 
Interactive Fiction.” http://www.inform7.com/learn/documents/WhitePaper.pdf 

Extract: “This is an account of theoretical issues which came out, almost unbidden, 
from a practical test of the following hypothesis: that the natural language in which 
to write interactive fiction (IF) is natural language. IF is a form of creative writing 
[where] the author creates an imaginary textual world which can actively be 
explored by a “reader”, or “player”, directing the actions of a protagonist. Such 
works have hitherto been created as if computer programs, using specially adapted 
programming languages (see for instance Nelson (2001)), but the Inform 7 project 

https://github.com/capergroup/bayou
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aims to replace such syntax with natural language: specifically, a subset of 
English…” 

[Neubig 2016] Graham Neubig. “Survey of Methods to Generate Natural Language from 
Source Code.” 2016. http://www.languageandcode.org/nlse2015/neubig15nlse-
survey.pdf. 

[Nguyen 2013] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. “Semfix: 
Program Repair via Semantic Analysis.” In Proceedings of the 2013 International 
Conference on Software Engineering, ICSE ’13’, pp. 772–781, Piscataway, NJ, USA, 
2013. IEEE Press. 

[Njonko 2012] Njonko, Paul Brillant Feuto, and Centre Tesnière (both at Centre 
Tesnière, University of Franche-Comté, Besancon, France), “From Natural Language 
Business Requirements to Executable Models via SBVR,” 2012 International Conference 
on Systems and Informatics (ICSAI 2012). 

Abstract: “This paper presents a methodology for transforming business rules (BR) 
written in natural language (NL) such as English into a set of executable models as 
Unified Modeling Language (UML), Structured Query language (SQL), etc. As the 
direct automatic transformation of NL specifications to executable models is very 
difficult due to the inherent ambiguities of NL, this methodology aims at using the 
Semantics of Business Vocabulary and Business Rules (SBVR) as an intermediate 
model front-ended by Micro-Systemic Linguistic Analysis (MSLA) because of their 
mathematical underpinnings. SBVR is a Semantic Metamodel (SMM) introduced by 
the Object Management Group (OMG) for specifying semantic models of business 
using NL. SBVR is not only easy to process by machine since it is grounded in 
formal logic, but it is also easy to understand both by software developers and other 
stakeholders. Given that SBVR is fully integrated in OMG’s Model Driven 
Architecture (MDA) and behaves as a Computational Independent Model (CIM), 
our approach advocates model transformation which is the key constituent of the 
MDA standard.” 

[OMG 2017] Object Management Group (OMG). “Semantics of Business Vocabulary 
and Business Rules (SBVR).” 2017. Version 1.4. 
https://www.omg.org/spec/SBVR/About-SBVR/ 

Extract: “This specification defines the vocabulary and rules… for documenting the 
semantics of business vocabularies and business rules for the exchange of business 
vocabularies and business rules among organizations and between software tools. 
This specification is interpretable in predicate logic with a small extension using 
modal operators. It supports linguistic analysis of text for business vocabularies and 
business rules, with the linguistic analysis itself being outside the scope of this 
specification... The SBVR specification is applicable to the domain of business 
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vocabularies and business rules of all kinds of business activities in all kinds of 
organizations. It provides an unambiguous, meaning-centric, multilingual, and 
semantically rich capability for defining meanings of the language used by people in 
an industry, profession, discipline, field of study, or organization. This specification 
is conceptualized optimally for business people rather than automated processing. It 
is designed to be used for business purposes, independent of information systems 
designs to serve these business purposes…” 

SBVR is primarily a modelling system that can be used for many things, including 
implementation in information systems, and its rules are represented using XML. 
However, its Annex A defines “SBVR Structured English” as a rigid form of 
structured English and a mapping to the underlying model. As Annex A states: “The 
most common means of expressing definitions and business rules is through 
statements, not diagrams. While diagrams are helpful for seeing how concepts are 
related, they are impractical as a primary means of defining vocabularies and 
expressing business rules. This specification defines an English vocabulary for 
describing vocabularies and stating rules. There are many different ways that this 
vocabulary and other English vocabularies described using SBVR can be combined 
with common English words and structures to express definitions and statements. 
However expressed, the semantics of definitions and rules can be formally 
represented in terms of the SBVR vocabulary and, particularly, in terms of logical 
formulations (the SBVR conceptualization of formal logic). This annex describes 
one such way of using English that maps mechanically to SBVR concepts. It is not 
meant to offer all of the variety of common English, but rather, it uses a small 
number of English structures and common words to provide a simple and 
straightforward mapping.” 

Examples of SBVR Structured English (from its specification) are “It is obligatory 
that each rental car is owned by exactly one branch,” “A rental must have at most 
three additional drivers,” “A car must be assigned to a rental before the pick-up date 
of the rental,” and “A rental must be guaranteed by a credit card before a car is 
assigned to the rental.” 

[Oord] van den Oord, Aäron, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol 
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 
Wavenet: A Generative Model for Raw Audio. 

Abstract: “This paper introduces WaveNet, a deep neural network for generating 
raw audio waveforms. The model is fully probabilistic and autoregressive, with the 
predictive distribution for each audio sample conditioned on all previous ones; 
nonetheless we show that it can be efficiently trained on data with tens of thousands 
of samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural 
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sounding than the best parametric and concatenative systems for both English and 
Chinese. A single WaveNet can capture the characteristics of many different 
speakers with equal fidelity, and can switch between them by conditioning on the 
speaker identity. When trained to model music, we find that it generates novel and 
often highly realistic musical fragments. We also show that it can be employed as a 
discriminative model, returning promising results for phoneme recognition.” 

This can generate audio from text; some of its ideas might also be applicable to 
generating code from text. 

[Parnas 1985] Parnas, David. “Software Aspects of Strategic Defense Systems.” 
Communications of the ACM. Volume 28, Number 12, December 1985.  

[Pradel 2017] Pradel, Michael, and Koushik Sen. “Deep Learning to Find Bugs.” 
Technical Report TUD-CS-2017-0295. TU Darmstadt, Department of Computer Science. 
November 2017. http://mp.binaervarianz.de/DeepBugs_TR_Nov2017.pdf 

[Pradel 2018] Pradel, Michael, and Koushik Sen. “DeepBugs: A Learning Approach to 
Name-Based Bug Detection.” Proc. ACM Program. Lang. 2, OOPSLA, Article 147 
(November 2018). https://doi.org/10.1145/3276517 https://software-
lab.org/publications/oopsla2018_DeepBugs.pdf 

Abstract: “Natural language elements in source code, e.g., the names of variables 
and functions, convey useful information. However, most existing bug detection 
tools ignore this information and therefore miss some classes of bugs. The few 
existing name-based bug detection approaches reason about names on a syntactic 
level and rely on manually designed and tuned algorithms to detect bugs. This paper 
presents DeepBugs, a learning approach to name-based bug detection, which 
reasons about names based on a semantic representation and which automatically 
learns bug detectors instead of manually writing them. We formulate bug detection 
as a binary classification problem and train a classifier that distinguishes correct 
from incorrect code. To address the challenge that effectively learning a bug 
detector requires examples of both correct and incorrect code, we create likely 
incorrect code examples from an existing corpus of code through simple code 
transformations. A novel insight learned from our work is that learning from 
artificially seeded bugs yields bug detectors that are effective at finding bugs in real-
world code. We implement our idea into a framework for learning-based and name-
based bug detection. Three bug detectors built on top of the framework detect 
accidentally swapped function arguments, incorrect binary operators, and incorrect 
operands in binary operations. Applying the approach to a corpus of 150,000 
JavaScript files yields bug detectors that have a high accuracy (between 89% and 
95%), are very efficient (less than 20 milliseconds per analyzed file), and reveal 102 
programming mistakes (with 68% true positive rate) in real-world code.” 

https://doi.org/10.1145/3276517
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[Priya 2017] Priya, Renita, Xinyuan Wang, Yu Sun, and Yujie Hu. “A Deep Dive into 
Automatic Code Generation Using Character Based Recurrent Neural Networks.” 2017 
International Conference on Computational Science and Computational Intelligence. 

Abstract: “Deep Learning is an emerging field in Artificial Intelligence that uses 
biologically inspired neural networks to recognize patterns in the natural world. 
These neural networks have an amazing ability to process large amounts of data and 
learn from them. Recurrent Neural Networks (RNN) are used in applications 
involving natural language processing like text translations and text generation. This 
research evaluates the effectiveness of a RNN to be able to automatically generate 
programming code. Programming languages are different from natural languages in 
that they have unique structure and syntax. The goal for this research is to conduct 
experiments on a character RNN model with for three programming languages; 
Java, Python and C#, and evaluate the results by testing and analyzing the ability for 
the RNN to automatically produce code that is able to compile.” 

Comments: This is not useful, as it merely attempts to generate code that compiles 
or runs rather than code that performs a specific task. Interestingly, one of the 
authors is from an Irvine, CA, high school. 

[Rajeev 2013] Rajeev, Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Sanjit 
A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa, 

“Syntax-guided synthesis,” 2013 Formal Methods in Computer-Aided Design, DOI: 
10.1109/FMCAD.2013.6679385, https://ieeexplore.ieee.org/document/6679385/authors 

Abstract: “The classical formulation of the program-synthesis problem is to find a 
program that meets a correctness specification given as a logical formula. Recent 
work on program synthesis and program optimization illustrates many potential 
benefits of allowing the user to supplement the logical specification with a syntactic 
template that constrains the space of allowed implementations. Our goal is to 
identify the core computational problem common to these proposals in a logical 
framework. The input to the syntax-guided synthesis problem (SyGuS) consists of a 
background theory, a semantic correctness specification for the desired program 
given by a logical formula, and a syntactic set of candidate implementations given 
by a grammar. The computational problem then is to find an implementation from 
the set of candidate expressions so that it satisfies the specification in the given 
theory. We describe three different instantiations of the counter-example-guided-
inductive-synthesis (CEGIS) strategy for solving the synthesis problem, report on 
prototype implementations, and present experimental results on an initial set of 
benchmarks.” 

Extract: “we have developed an interchange format, called SYNTH-LIB, based on 
the syntax of SMT-LIB2-the input format accepted by the SMT solvers (see smt-
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lib.org). The input for the SyGuS problem to synthesize the function f with the 
specification φ1 in the theory LIA, with the grammar for the languages L1 is 
encoded in SYNTH-LIB as…” 

[Raza 2015] Raza, Mohammad, Sumit Gulwani, and Natasa Milic-Frayling. 
“Compositional Program Synthesis from Natural Language and Examples.” IJCAI'15 
Proceedings of the 24th International Conference on Artificial Intelligence. pp. 792–800. 
Buenos Aires, Argentina — July 25–31, 2015. 
https://dl.acm.org/citation.cfm?id=2832249.2832359 

Abstract: “Compositionality is a fundamental notion in computation whereby 
complex abstractions can be constructed from simpler ones, yet this property has so 
far escaped the paradigm of end-user programming from examples or natural 
language. Existing approaches restrict end users to only give holistic specifications 
of tasks, which limits the expressivity and scalability of these approaches to 
relatively simple programs in very restricted domains. In this paper we propose 
Compositional Program Synthesis (CPS): an approach in which tasks can be 
specified in a compositional manner through a combination of natural language and 
examples. We present a domain-agnostic program synthesis algorithm and 
demonstrate its application to an expressive string manipulation language. We 
evaluate our approach on complex tasks from online help forums that are beyond 
the scope of current state-of-the-art methods.” 

This is a result from Microsoft Research. They focus on a very narrow domain: 
manipulation of strings of characters. 

[Reynolds 2017] Reynolds, Matt. “AI Learns to Write Its Own Code by Stealing From 
Other Programs.” New Scientist. 2017-02-22. 
https://www.newscientist.com/article/mg23331144-500-ai-learns-to-write-its-own-code-
by-stealing-from-other-programs/ 

This news article discusses DeepCoder — see {Balog 2017]. 

[Rich 1992] Rich, Charles, and Richard C. Waters, Approaches to Automatic 
Programming, Mitsubishi Electric Research Laboratories, TR92-04, July 1992. 
http://www.merl.com/publications/docs/TR92-04.pdf 

Abstract: “This paper is an overview of current approaches to automatic 
programming organized around three fundamental questions that must be addressed 
in the design of any automatic programming system: What does the user see? How 
does the system work? What does the system know? As an example of a research 
effort in this area, we focus the Programmer´s Apprentice project.” 

https://dl.acm.org/citation.cfm?id=2832249.2832359
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[Riedel 2016] Riedel, Sebastian, Matko Bosnjak, and Tim Rocktäschel. “Programming 
with a Differentiable Forth Interpreter.” CoRR, abs/1605.06640, 2016. URL 
http://arxiv.org/abs/1605.06640. 

[Rosales-Morales 2015] Rosales-Morales, Viviana Yarel, Giner Alor-Hernández, Jorge 
Luis García-Alcaráz, Ramón Zatarain-Cabada, and María Lucía Barrón-Estrada, “An 
Analysis of Tools for Automatic Software Development and Automatic Code 
Generation,” Revista Facultad de Ingeniería, Universidad de Antioquia, No. 77, pp. 75–
87, 2015, 
http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/21957/20961 

Abstract: “Software development is an important area in software engineering, 
which is why a wide range of techniques, methods, and approaches has emerged to 
facilitate software development automation. This paper presents an analysis and 
evaluation of tools for automated software development and automatic code 
generation in order to determine whether they meet a set of quality metrics. Diverse 
quality metrics were considered such as effectiveness, productivity, safety, and 
satisfaction in order to carry out a qualitative and quantitative evaluation. The tools 
evaluated are CASE tools, frameworks, and Integrated Development Environments 
(IDEs). The evaluation was conducted to measure not only the tools’ ability to be 
employed, but also their support for automated software development and automatic 
source code generation. The aim of this work is to provide a methodology and a 
brief review of the most important works to identify the main features of these 
works and present a comparative evaluation in qualitative and quantitative terms of 
quality metrics. This would provide software developers with the information they 
need to decide the tools that can be useful for them.” 

Note that this survey does not generally identify the approaches as applying AI. The 
only exception is its reference to an “Artificial Coder using Artificial Intelligence” 
(ACAI), which we refer to as [Danilchenko2012]. 

[Roychoudhury 2017] Roychoudhury, Suman , Sagar Sunkle, Deepali Kholkar, and 
Vinay Kulkarni (Tata Consultancy Services Research, India), “From Natural Language to 
SBVR Model Authoring Using Structured English for Compliance Checking,” 2325-
6362/17, IEEE Computer Society, 2017, DOI 10.1109/EDOC.2017.19, 2017 IEEE 21st 
International Enterprise Distributed Object Computing Conference. 

Abstract: “In spite of the proliferation of the business process and data compliance 
checking approaches, in practice, regulatory compliance management still demands 
considerable manual intervention. Previous research in the field of compliance has 
established that the manual specification/tagging of the regulations not only fails to 
ensure their proper coverage but also negatively affects the turnaround time both in 
proving and maintaining the compliance. Our contribution is an (semi-) automated 

http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/21957/20961


R-28 

transformation of the legal NL (English) text to SBVR Model via authoring of 
Structured English (SE) rules. The key benefit of our approach is the direct 
involvement of the domain experts to specify regulations using SE, which is close to 
English, rather than a formal specification language. We substantiate the approach 
using an example from industry regulations in banking and financial services 
domain.” 

[Saad 2019] Saad, Feras, Mcro F. Cusumano-Towner, Ulrich Schaechtle, Martin C. 
Rinard, and Vikash K. Mansinghka (all at the Massachusetts Institute of Technology), 
“Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling,” Proc. 
ACM Program. Lang. 3, POPL, Article 37 (January 2019). 
https://doi.org/10.1145/3290350, https://dl.acm.org/citation.cfm?doid=3302515.3290350 

Abstract: “We present new techniques for automatically constructing probabilistic 
programs for data analysis, interpretation, and prediction. These techniques work 
with probabilistic domain-specific data modeling languages that capture key 
properties of a broad class of data generating processes, using Bayesian inference to 
synthesize probabilistic programs in these modeling languages given observed data. 
We provide a precise formulation of Bayesian synthesis for automatic data 
modeling that identifies sufficient conditions for the resulting synthesis procedure to 
be sound. We also derive a general class of synthesis algorithms for domain-specific 
languages specified by probabilistic context-free grammars and establish the 
soundness of our approach for these languages. We apply the techniques to 
automatically synthesize probabilistic programs for time series data and multivariate 
tabular data. We show how to analyze the structure of the synthesized programs to 
compute, for key qualitative properties of interest, the probability that the 
underlying data generating process exhibits each of these properties. Second, we 
translate probabilistic programs in the domain-specific language into probabilistic 
programs in Venture, a general-purpose probabilistic programming system. The 
translated Venture programs are then executed to obtain predictions of new time 
series data and new multivariate data records. Experimental results show that our 
techniques can accurately infer qualitative structure in multiple real-world data sets 
and outperform standard data analysis methods in forecasting and predicting new 
data.” 

[Samanta 2014] Samanta, R., O. Olivo, and E. A. Emerson. “Cost-Aware Automatic 
Program Repair.” In Static Analysis - 21st International Symposium, SAS 2014, Munich, 
Germany, September 11–13, 2014. pp. 268–284. 

[Samimi 2012] Samimi, H., M. Schäfer, S. Artzi, T. D. Millstein, F. Tip, and L. J. 
Hendren. “Automated Repair of HTML Generation Errors in PHP Applications Using 
String Constraint Solving.” In ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pp. 277–
287. 

https://doi.org/10.1145/3290350
https://dl.acm.org/citation.cfm?doid=3302515.3290350
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[Schuman 2015] Schuman, C. D. Neuroscience-Inspired Dynamic Architectures, Ph.D. 
Dissertation, The University of Tennessee, Knoxville, TN. May, 2015. Available from 
http://www.lib.utk.eu/  

[Sharma 2015] Sharma, Richa, Pratyoush K. Srivastava, and Kanad K. Biswas. “From 
Natural Language Requirements to UML Class Diagrams.” 2015 IEEE Second 
International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). 
pp. 1–8. IEEE. 

Abstract: “Unified Modeling Language (UML) is the most popular modeling 
language for analysis, design and development of the software system. There has 
been a lot of research interest in generating these UML models, especially class 
diagrams, automatically from Natural Language requirements. The interest in class 
diagrams can be attributed to the fact that classes represent the abstractions present 
in the system to be developed. However, automated generation of UML class 
diagrams is a challenging task as it involves lot of pre-processing or manual 
intervention at times. In this paper, we present dependency analysis based approach 
to derive UML class diagrams automatically from Natural Language requirements. 
We transform the requirements statements to an intermediary frame-based 
structured representation using dependency analysis of requirements statements and 
the Grammatical Knowledge Patterns. The knowledge stored in the frame-based 
structured representation is used to derive class diagrams using rule-based 
algorithm. Our approach has generated similar class diagrams as reported in earlier 
works based on linguistic analysis with either annotation or manual intervention. 
We present the effectiveness of our approach in terms of recall and precision for the 
case-studies presented in earlier works.” 

[Silver 2018] Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, 
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore 
Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. “A General 
Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-
play.” Science, 362, pp. 1140–1144 (2018). 2018-12-07. 

Abstract: “The game of chess is the longest-studied domain in the history of 
artificial intelligence. The strongest programs are based on a combination of 
sophisticated search techniques, domain-specific adaptations, and handcrafted 
evaluation functions that have been refined by human experts over several decades. 
By contrast, the AlphaGo Zero program recently achieved superhuman performance 
in the game of Go by reinforcement learning from self-play. In this paper, we 
generalize this approach into a single AlphaZero algorithm that can achieve 
superhuman performance in many challenging games. Starting from random play 
and given no domain knowledge except the game rules, AlphaZero convincingly 
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defeated a world champion program in the games of chess and shogi (Japanese 
chess), as well as Go.” 

While this paper is not about generating source code per se, it is listed because it 
represents a stunning demonstration of modern AI capabilities. This is a single 
algorithm that, given only the game rules, can achieve superhuman performance in 
Chess, Shogi, and Go by self-play. 

[Simonite 2019] Simonite, Tom, “The World’s Fastest Supercomputer Breaks an AI 
Speed Record”, Wired, 2019-01-31, https://www.wired.com/story/worlds-fastest-
supercomputer-breaks-ai-record/ 

[So 2018] So, Sunbeom, and Hakjoo Oh (Korea University), “Synthesizing Pattern 
Programs from Examples,” Proceedings of the Twenty-Seventh International Joint 
Conference on Artificial Intelligence (IJCAI-18), 2018 

Abstract: “We describe a programming-by-example system that automatically 
generates pattern programs from examples. Writing pattern programs, which 
produce various patterns of characters, is one of the most popular programming 
exercises for entry level students. However, students often find it difficult to write 
correct solutions by themselves. In this paper, we present a method for synthesizing 
pattern programs from examples, allowing students to improve their programming 
skills efficiently. To that end, we first design a domain-specific language that 
supports a large class of pattern programs that students struggle with. Next, we 
develop a synthesis algorithm that efficiently finds a desired program by combining 
enumerative search, constraint solving, and program analysis. We implemented the 
algorithm in a tool and evaluated it on 40 exercises gathered from online forums. 
The experimental results and user study show that our tool can synthesize 
instructive solutions from 1–3 example patterns in 1.2 seconds on average.” 

[Tong 2016] Tong, Anh and Jaesik Choi, “Automatic Generation of Probabilistic 
Programming from Time Series Data”, 2016, https://arxiv.org/abs/1607.00710 

Abstract: “Probabilistic programming languages represent complex data with 
intermingled models in a few lines of code. Efficient inference algorithms in 
probabilistic programming languages make possible to build unified frameworks to 
compute interesting probabilities of various large, real-world problems. When the 
structure of model is given, constructing a probabilistic program is rather 
straightforward. Thus, main focus have been to Alearn the best model parameters 
and compute marginal probabilities. In this paper, we provide a new perspective to 
build expressive probabilistic program from continue time series data when the 
structure of model is not given. The intuition behind of our method is to find a 
descriptive covariance structure of time series data in nonparametric Gaussian 
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process regression. We report that such descriptive covariance structure efficiently 
derives a probabilistic programming description accurately.” 

[Volkstorf 2015] Volkstorf, Charles, “Program Synthesis from Axiomatic Proof of 
Correctness,” 2017-01-07, https://arxiv.org/abs/1501.01363 

Abstract: “Program Synthesis is the mapping of a specification of what a computer 
program is supposed to do, into a computer program that does what the specification 
says to do. This is equivalent to constructing any computer program and a sound 
proof that it meets the given specification. 

We axiomatically prove statements of the form: program PROG meets specification 
SPEC. We derive 7 axioms from the definition of the PHP programming language 
in which the programs are to be written. For each primitive function or process 
described, we write a program that uses only that feature (function or process), and 
we have an axiom that this program meets the specification described. Generic ways 
to alter or combine programs, that meet known specifications, into new programs 
that meet known specifications, are our 7 rules of inference. 

To efficiently prove statements that some program meets a given specification, we 
work backwards from the specification. We apply the inverses of the rules to the 
specifications that we must meet, until we reach axioms that are combined by these 
rules to prove that a particular program meets the given specification. Due to their 
distinct nature, typically few inverse rules apply. To avoid complex wff and 
program manipulation algorithms, we advocate the use of simple table maintenance 
and look-up functions to simulate these complexities as a prototype.” 

[Whalen 2016] Whalen, Daniel, “Holophrasm: A Neural Automated Theorem Prover for 
Higher-Order Logic,” 10 Aug 2016, https://arxiv.org/abs/1608.02644 

[Wheeler 2016] Wheeler, David A., and Amy E. Henninger, State-of-the-Art Resources 
(SOAR) for Software Vulnerability Detection, Test, and Evaluation 2016 (aka “Software 
SOAR”), Institute for Defense Analyses Paper P-8005, November 2016, 
https://www.acq.osd.mil/se/initiatives/init_jfac.html or 
https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/ITSD/2017/
P-8005.ashx 

[Wheeler 2019] Wheeler, David A., “Secure Software Design & Programming Lecture 
10: Formal Methods,” 2019-05-01, https://dwheeler.com/secure-
class/presentations/Secure-Software-10-Formal-Methods.ppt 

[Wilkins 2018] Wilkins, Benjamin. “Sketching Interfaces Generating Code From Low 
Fidelity Wireframes.” AirBnb. 2018. https://airbnb.design/sketching-interfaces/ 

Extract: “Sketching seemed like the natural place to start. As interface designers, 
sketching is an intuitive method of expressing a concept. We wanted to see how it 

https://arxiv.org/abs/1501.01363
https://www.acq.osd.mil/se/initiatives/init_jfac.html
https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/ITSD/2017/P-8005.ashx
https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/ITSD/2017/P-8005.ashx
https://dwheeler.com/secure-class/presentations/Secure-Software-10-Formal-Methods.ppt
https://dwheeler.com/secure-class/presentations/Secure-Software-10-Formal-Methods.ppt


R-32 

might look to skip a few steps in the product development lifecycle and instantly 
translate our sketches into a finished product. Airbnb’s design system is well 
documented, and each component within the system has been named. We developed 
a working theory that … we should be able to classify the 150 components within 
our system and teach a machine to recognize them. We built an initial prototype 
[called sketch2Code] using about a dozen hand-drawn components as training data, 
open source machine learning algorithms, and a small amount of intermediary code 
to render components from our design system into the browser. We were pleasantly 
surprised with the result… This system has already demonstrated massive 
potential.” 

This article discusses Airbnb’s sketch2Code system, which is “able to scan the 
mockups made by the designers and translate it into code.” (summary by [Cheng 
2018]). The goal was to rapidly test designs. 

[Xu 2018] Xu, James Y., and Yingxu Wang (University of Calgary, Canada), “Towards 
and Methodology for RTPA-MATLAB Code Generation Based on Machine Learning 
Rules,” Proc. 2018 IEEE 17th International Conference on Cognitive Informatics and 
Cognitive Computing, https://ieeexplore.ieee.org/document/8482093/ 

Abstract: “Autonomous program code generation by machine learning is not only an 
ultimate goal but also a theoretical challenge to software science and engineering. A 
methodology and case study for code generation based on Real-Time Process 
Algebra (RTPA) by machine learning are presented in this paper. It describes a 
machine learning approach for code generation in MATLAB based on acquired 
RTPA rules and formal specifications. The design and implementation of the 
RTPA-MATLAB code generator is introduced, which is implemented by an RTPA 
parser and an MATLAB code builder. The experimental case studies have 
demonstrated the novelty of the theories and methodologies for code generation 
based on machine-learnt programming rules.” 

Extracts: “The kernel of the RTPA-MATLAB code generator learns rules from 
RTPA specifications for both structure and process models in order to automatically 
generate code in MATLAB… the coding rules elicited from RTPA are represented 
in the learning engine covering rules of types, primitive operators and relational 
operators of programs. A finite set of basic rules for code generation is built-in as 
prior knowledge. The system carries out rule learning under supervision for 
developing its own programming knowledge base towards automatic code 
generation.” 

[Yin 2017] Yin, Pencheng, and Graham Neubig (both at Carnegie Mellon University). “A 
Syntactic Neural Model for General-Purpose Code Generation.” Proceedings of the 55th 
Annual Meeting of the Association for Computational Linguistics, pp. 440–450. 

https://ieeexplore.ieee.org/document/8482093/
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Vancouver, Canada, July 30 - August 4, 2017. © 2017 Association for Computational 
Linguistics. https://doi.org/10.18653/v1/P17-1041 

Abstract: “We consider the problem of parsing natural language descriptions into 
source code written in a general-purpose programming language like Python. 
Existing datadriven methods treat this problem as a language generation task 
without considering the underlying syntax of the target programming language. 
Informed by previous work in semantic parsing, in this paper we propose a novel 
neural architecture powered by a grammar model to explicitly capture the target 
syntax as prior knowledge. Experiments find this an effective way to scale up to 
generation of complex programs from natural language descriptions, achieving 
state-of-the-art results that well outperform previous code generation and semantic 
parsing approaches.” 

[Zhang 2017] Zhang, Han, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, 
Xiaolei Huang, and Dimitris Metaxas. “StackGAN: Text to Photo-realistic Image 
Synthesis with Stacked Generative Adversarial Networks.” 
https://arxiv.org/abs/1612.03242 

Abstract: “Synthesizing high-quality images from text descriptions is a challenging 
problem in computer vision and has many practical applications. Samples generated 
by existing text-to-image approaches can roughly reflect the meaning of the given 
descriptions, but they fail to contain necessary details and vivid object parts. In this 
paper, we propose Stacked Generative Adversarial Networks (StackGAN) to 
generate 256x256 photo-realistic images conditioned on text descriptions. We 
decompose the hard problem into more manageable sub-problems through a sketch-
refinement process. The Stage-I GAN sketches the primitive shape and colors of the 
object based on the given text description, yielding Stage-I low-resolution images. 
The Stage-II GAN takes Stage-I results and text descriptions as inputs, and 
generates high-resolution images with photo-realistic details. It is able to rectify 
defects in Stage-I results and add compelling details with the refinement process. To 
improve the diversity of the synthesized images and stabilize the training of the 
conditional-GAN, we introduce a novel Conditioning Augmentation technique that 
encourages smoothness in the latent conditioning manifold. Extensive experiments 
and comparisons with state-of-the-arts on benchmark datasets demonstrate that the 
proposed method achieves significant improvements on generating photo-realistic 
images conditioned on text descriptions.” 

This generates images from text; some of its ideas might also be applicable to 
generating code from text. 
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Acronyms and Abbreviations 

AI Artificial Intelligence 
AST Abstract Syntax Tree 
CPS Compositional Program Synthesis 
GAN Generative Adversarial Network 
GUI Graphical User Interface 
IDE Interactive Development Environment 
IFP Inductive Functional Programming 
ILP Inductive Logic Programming 
IP Inductive Programming 
ITL Interactive Task Learning 
MDA Model-Driven Architecture 
MDE Model-Driven Engineering 
ML Machine Learning 
NLP Natural Language Processing 
NN Neural Network 
OMG Object Management Group 
OoV Out-of-Vocabulary 
OSS Open Source Software 
RAPID Requirement Analysis to Provide Instant Diagrams 
RL Reinforcement Learning 
RNN Recurrent Neural Network 
RTPA Real-Time Process Algebra 
SBVR  Semantics of Business Vocabulary and Business Rules 
SyGuS Syntax-Guided Synthesis 
SyGus-Comp Syntax-Guided Synthesis Competition  
SyGuS-IF Syntax-Guided Synthesis Input Format 
StackGAN Stacked Generative Adversarial Network 
UI User Interface 
UML Unified Modeling Language 
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