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Executive Summary 

Bootstrapping is a powerful nonparametric tool for 
conducting statistical inference with many applications to data 
from operational testing. Bootstrapping is most useful when the 
population sampled from is unknown or complex or the 
sampling distribution of the desired statistic is difficult to derive.  
Careful use of bootstrapping can help address many challenges 
in analyzing operational test data. 

Bootstrapping is predicated on the use of the sample data 
as a plug in estimator for the population. Inference is then 
conducted in this “bootstrap world” wherein the population of 
interest is identical to the observed sample.  With the population 
known, repeated sampling can be used to characterize the 
desired sampling distribution up to Monte Carlo error.  This can 
now be used to calculate exact confidence intervals or perform 
relevant hypothesis tests within the bootstrap world.  These 
bootstrap world intervals and p-values can be treated as 
estimates in the real world. 

This briefing provide an outline for this approach and 
include examples applying these principles to synthetic data sets 
generated to mimic operational test data.  The role of the 

sampling distribution in statistical inference is described, and 
bootstrapping is motivated intuitively using the metaphor of the 
bootstrap world introduced above.  Examples include 
confidence intervals for sample means and medians, how to 
apply the bootstrap to complex statistics involving random 
variables from multiple distributions (such as Availability 
calculations), and hypothesis testing via the bootstrap. 
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Bottom Line Up Front

• Bootstrapping 
– Powerful tool applicable in a variety of situations

» Quantify Variance
» Hypothesis Testing

– Use for inference not estimation
– Resample using the same approach that was used to 

generate your sample 
» For hypothesis testing, resample under the null 

hypothesis
– Bootstrap results can only ever be as good as the sample 

upon which they’re based

• Most useful when:
– Distributions unknown or complex
– Deriving sampling distribution intractable/impractical
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• MQ-8C Fire Scout
– Navy Intelligence/Surveillance/ 

Reconnaissance system
– Vertical take-off unmanned air 

vehicle (UAV)
– Electro-optical/Infrared sensor
– Mission includes detection of 

maritime vessels & ability to use 
sensors to lock on and auto-track 
targets

• Questions of interest
– What is average detection range?
– What is the median target lock 

percentage?
– What is the system’s availability?

Note:  All data and conclusions presented here are strictly notional and are used for illustration purposes only

Assessing Performance of a Small UAV
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Outline

• Background
– Populations & Sampling
– Sampling Distributions
– Statistical Inference

• Bootstrap Basics
– Resampling
– The Bootstrap World

• Examples
– Confidence Intervals 

» Autotrack performance (median)
» Availability 

– Hypothesis testing
» Two-sample testing

• Extensions & Conclusions
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Population 
of detection 

ranges

• Population
– Can be a group of actually existing objects 

or a hypothetical group of potential 
objects/events

• Population of Detection Ranges for MQ-8C
– Hypothetical & infinite
– Any mission, target vessel, payload 

operator, etc.

Population: The 
entire pool of items 

or events of 
interest for some 

question or 
experiment

Populations
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Probability Distribution

Density 
curve

• Probability density function describes how 
individual objects/events are distributed 
within a population

– Allows calculation of important values
» E.g., Probability of detection beyond 10 km

– Characterized by parameters
» Mean 
» Standard deviation

Probability 
Distribution: The 

entire pool of items 
or events of 

interest for some 
question or 
experiment

𝒇𝒇 𝒙𝒙 𝝁𝝁,𝝈𝝈 =
𝟏𝟏
𝟐𝟐𝟐𝟐𝝈𝝈

𝒆𝒆𝒆𝒆𝒆𝒆(− 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 − 𝝁𝝁 𝟐𝟐 / (𝟐𝟐𝝈𝝈𝟐𝟐)
𝒙𝒙

Lognormal Density Function
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Statistical Parameters

Population 
Mean

• Knowing the parameters of the distribution 
is equivalent to knowing the distribution

• Normal (Two parameters)
– Mean (μ)
– Variance (σ2)

• Exponential (One parameter)
– Mean (λ)

Parameter: Numerical 
quantity that 

characterizes a 
statistical distribution, 
such as a population

Spread of the population
(measured by Standard 

Deviation/Variance)
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Sampling from Populations

Population

Sample (n = 36)

Sample: A subset 
of a population 
selected by a 

defined procedure 
(“Simple random 

sample”, etc.)

To understand the 
sample, it is necessary 

to understand the 
population and the 

procedure by which the 
sample is selected
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Sampling from Populations

Population

Potential Samples
(n = 36)

Individual samples 

There are many 
samples that can 

be generated 
from a single 

population. Which 
one is generated 
is dependent on 

the sampling 
procedure and is 
typical random.
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The Sample Mean is an Example of an 
Estimator

Population

Sample

Sample mean:  
Mean of the 

observed 
sample

Statistic:  A function 
based on a sample

• The sample mean is 
statistic often used 
to estimate the 
mean of a 
population.

• Since it is based a 
specific sample, a 
sample mean won’t 
be equal to the 
population mean.

• Estimators can be 
derived for different 
values of interest 
(median, variance, 
quantiles, etc.).

• The quality of an 
estimator depends 
on the distribution of 
the population.

Estimator:  A statistic 
used to estimate a 

quantity of interest, such 
as a parameter. 
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Sample Statistics From Multiple Samples

Population

Potential Samples
(n = 36)

Each potential sample 
will be different. 

Statistics associated 
with those samples 

will also vary.

Just because your 
sample statistic 

doesn’t equal your 
population parameter 

doesn’t mean that 
your sample or 

statistic is invalid
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Sampling Distributions

Sampling 
Distribution:
Hypothetical 

distribution of all 
possible sample 

statistics resulting 
from a particular 

sampling approach

• For a particular 
population, 
sampling approach, 
and sample 
statistic, there is a 
distribution of 
potential 
realizations of that 
sample statistic.

• Estimating this 
distribution is the 
first step to 
performing 
statistical inference
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P-values and Sampling Distributions

• XTREME!
– “More extreme” meaning “Less likely under the null hypothesis”
– Need to estimate sampling distribution of sample statistic under the 

null

• Further information on p-values:  see recent ASA statement

P-value:  The probability 
of observing a sample as 
extreme or more extreme 

than the observed 
sample under a particular 

null hypothesis.

Sampling 
distribution of the 

sample mean
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Estimating the Sampling Distribution

• Case 1:  We know the population distribution perfectly
 Estimate the sampling distribution via Monte Carlo
– Almost never see this

• Case 2:  We are willing to make some assumptions about the 
nature of the population distribution 
 Estimate population parameters and derive sampling 
distribution mathematically using estimated population 
parameters
– Most common case when statistical inference is applied

• Case 3:  We have little information about the population and 
no basis for making credible assumptions
 Estimate the sampling distribution via bootstrapping



6/9/2016-15

Case 1: We know the sampling distribution perfectly
 Estimate via Monte Carlo simulation

Known Population

Repeatedly
Generate  
Sample

Combine 
Sample Means 

to Estimate 
Sampling 

Distribution
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Case 2:  We derive or approximate the sampling distribution 
based on assumptions

 Estimate population parameters as necessary

• Assume:  Population, 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … is Normally 
distributed with mean μ and variance σ2

Sampling distribution for 𝑥̅𝑥 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 ~𝑁𝑁 𝑛𝑛𝑛𝑛,𝑛𝑛𝜎𝜎2


1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 ~𝑁𝑁 1

𝑛𝑛
∗ 𝑛𝑛𝑛𝑛, 1

𝑛𝑛

2
∗ 𝑛𝑛𝜎𝜎2

𝑥̅𝑥~𝑁𝑁 𝜇𝜇, 𝜎𝜎
2

𝑛𝑛

• Using the observed sample, we can 
estimate μ to generate confidence 
intervals and perform hypothesis tests*

Properties of Normal 
Random Variables:

1) The sum of independent 
Normal RVs is Normal.

2) Multiplying a Normal RV 
by a constant will result in 
a Normal RV with scaled 
mean and variance

*Note:  This assumes a known value for σ2. If the variance 
is unknown, it can be shown that the sampling distribution 
of 𝑥̅𝑥 is a t distribution

Sometimes, we can approximate 
the distribution of a statistic, such 
the mean of a sample drawn from 
a non-normal distribution, which 
will follow a normal distribution 
according to the Central Limit 

Theorem.
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• Bootstrap World
– The observed sample from the real world is the population in the 

Bootstrap world. 
– Analyst has perfect knowledge of the bootstrap world 
– In the Bootstrap World, we’re in Case 1 instead of Case 3!

Case 3:  We have little information about the population and no 
basis for making credible assumptions

 Take a Magical Journey into the Bootstrap World!

Real World
• Underlying distributions 

unknown

• Finite samples

• Interval estimates must be 
derived through complex math

• Reality

Bootstrap World
• Distributions can be fully 

characterized

• Take as many samples as you like

• Interval estimates fall out from 
sampling distribution

• Estimate of reality
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If your Estimator is Based on an Unknown Parameter, 
“Plug In” an Estimator for the Unknown Parameter

• Plug it in, plug it in!
– Widely-used 

approach 
– Resulting estimates 

depend on the 
quality of the plug-
in estimator

Plug-in Principle:  
When a value of 

interest depends on 
something unknown 

(a parameter, 
distribution, etc.), 

plug in an estimator 
for it. 

Plug-In Estimator Example

�𝜎𝜎2 = 1
𝑛𝑛−1

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

Want to estimate 
the variance of 

some distribution

Plug-In 
estimator of 
population 

mean

Common variance estimator
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Estimating the Sampling Distribution 
via Bootstrap

The Observed Sample is treated 
as a plug-in estimator for the true 
population. The process then 
continues like the Monte Carlo 
estimation described in Case 1.

Repeatedly resample 
& calculate means 

from each resample

Combine bootstrapped 
means to generate 

bootstrap distribution of 
the sample mean

Resampling: Drawing 
with replacement from 

observed sample

“With Replacement” 
means that sampled 
values can repeat. 

Each observation in the 
original sample has an 

equal probability 
selected for each draw



6/9/2016-20

Estimating the Sampling Distribution in the 
Bootstrap World By Resampling

• Resampling approach
– Repeatedly re-sample observed data

» Draw resamples from observed data with 
replacement

– Calculate statistic of interest on each resample 
– Combine these resampled statistics to generate 

bootstrap distribution

• Resampling Appropriately 
– Complex statistics require a more careful 

approach
» System availability

– Ensure that the resampling is done using the 
same sampling approach that was used to 
generate the original sample

» Simple Random Sample
» Sampling from multiple populations
» Relevant factors?
» Complex statistics 

Bootstrapping:  
Statistical inference 

accomplished by 
estimation of a 

particular sampling 
distribution through 

resampling an 
observed data set.

𝐴𝐴𝑂𝑂 =
∑𝑈𝑈𝑈𝑈 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖

∑(𝑈𝑈𝑈𝑈 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖)

System Availability
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Bootstrap Distribution as an Estimator for 
the Sampling Distribution

• Bootstrap for inference not for 
better estimates

– Mean of bootstrap distribution is 
still your sample estimate, not the 
mean of your true sampling 
distribution

– Tells you how accurate your 
estimates are (confidence 
intervals)

• Bootstrap distribution can be fully 
known

– 𝑛𝑛𝑛𝑛 possible bootstrap resamples
– Typically use a smaller number 

for estimating bootstrap 
distribution (10,000 for example)

– Draw as many resamples as you 
need based on how precise an 
estimate you require

True Sampling 
Distribution

Bootstrap 
Distribution
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Confidence Intervals

• Confidence interval for sample mean 
in the real world

– Sampling distribution known
– Interval around mean that will contain 

the mean 100*(1-α)% of the time
– Monte Carlo approach:  Generate 

10,000 samples from population, drop 
the smallest 250 and largest 250

Confidence Interval:  A range of 
values that will contain a particular 

parameter with a specified probability

True Sampling 
Distribution

95 percent confidence 
interval for the mean
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Bootstrap Confidence Intervals

• Percentile Interval (Bootstrap World)
– Use bootstrap distribution for the 

sample mean as estimator for true 
sampling distribution 

– Monte Carlo approach:  
» Generate 10,000 bootstrap 

resamples
» Calculate mean for each
» The 250th and 9,751st largest 

observations are lower and upper 
confidence bounds for a 95% 
confidence interval

Bootstrap 
Distribution

Percentile Interval:  Bootstrap 
confidence interval using percentiles of 
the bootstrap distribution to define an 
interval for the parameter of interest

95 percent confidence bootstrap 
percentile interval for the mean

Population 
Mean
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Bootstrap CI Example: 
MQ-8C Autotrack performance

• Evaluate MQ-8C payload’s capability to 
lock onto particular targets & auto-track 
them

– Percent Time Autotrack:

100 ∗
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

Track gates

Targeting 
reticle

Many observations 
at 100%

Distribution doesn’t 
appear Normal

Want to estimate 
the median
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Sampling Distribution for Median Autotrack
Times

• Case 1:  We know the population distribution perfectly

• Case 2:  We are willing to make some assumptions about the nature 
of the population distribution 

• Case 3:  We have little information about the population, and no 
basis for making credible assumptions
 Estimate the sampling distribution of the median via bootstrapping
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Estimating the Sampling Distribution 
via Bootstrap

Observed Sample

Repeatedly resample 
& calculate median
from each resample

Combine bootstrapped 
medians to generate 

bootstrap distribution of 
the sample median
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Bootstrap Confidence Interval for the 
Sample Median

• Different Statistic, Same Approach
– Methodology for estimating median 

identical to methodology for mean
– Generate bootstrap distribution of 

median & pick off the relevant 
quantiles

• Nonparametric estimate
– No model specified
– Able to quantify variance of our 

estimate of the median

• Works with other quantiles, too!
– Remember:  Must have sufficient data 

to estimate quantile to begin with

Bootstrap 
Distribution

95 percent confidence bootstrap 
percentile interval for the median

Population 
Median
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Bootstrapping Offers an Alternative to Parametric 
Methods for Availability Confidence Intervals

• System Availability
– Function of observations from two distributions

𝐴𝐴𝑂𝑂 =
∑𝑈𝑈𝑈𝑈 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖

∑(𝑈𝑈𝑈𝑈 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖)

Parametric Approach
• Specify model for each 

distribution
• Derive distribution of statistic
• Estimate confidence interval

Bootstrap Approach
• Re-sample entire test (up times 

and downtimes)
• Compute statistic for each 

iteration
• Generate bootstrap distribution
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Resample Over the Test Period Rather Than the 
Number of Up and Down Times

𝐴𝐴𝑂𝑂 =
562.2
800

= 0.703
Original Data

Bootstrap resamples 
of the test

𝐴𝐴𝑂𝑂∗ =
510.5
800

= 0.638

𝐴𝐴𝑂𝑂∗ =
456.8
800

= 0.571

𝐴𝐴𝑂𝑂∗ =
680.2
800

= 0.850

Resample 800 hours of testing rather than n uptimes and m downtimes. 
Draw individual up/down times from data and continue drawing until the 

resampled test has the same length as the actual test
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Bootstrap Confidence Interval for 
System Availability

• Generate bootstrap distribution using the 
same approach as for the original sample

– Draw Up Times and Down Times from 
sample Up & Down Times instead of 
population

– Are Up & Down Times independent?
» Based on correlation and/or understanding 

of system engineering and maintenance
» If not, my need to draw as pairs

Bootstrap 
Distribution

𝐴𝐴𝑂𝑂∗ = 0.638

𝐴𝐴𝑂𝑂∗ = 0.571

𝐴𝐴𝑂𝑂∗ = 0.850

95 percent bootstrap percentile 
interval for the median

True  System 
Availability
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Two Sample Hypothesis Testing

Hypothesis Test:

𝐻𝐻0:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐻𝐻1:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

Phrased differently:

𝐻𝐻0:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0
𝐻𝐻1:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≠ 0

Under the 
Alternative

Under the Null
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Estimating the Sampling Distribution 
via Bootstrapping

Observed 
Sample

Repeatedly resample 
& calculate means 

from each resample

𝑥̅𝑥𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑥̅𝑥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 7.73

Bootstrap 
Resamples

𝑥̅𝑥∗𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑥̅𝑥∗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
= −1.56

𝑥̅𝑥∗𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑥̅𝑥∗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
= 7.14

𝑥̅𝑥∗𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑥̅𝑥∗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
= −0.50
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Two Sample Hypothesis Test
via Bootstrapping

Observed 
difference in 

detection range

Sample

Portion of sampling 
distribution “more extreme” 

(according to alternative) than 
observed sample mean

• Calculate p-value by 
determining proportion 
of sampling distribution 
more extreme than 
observed sample mean

– P-value = 0.1974

Hypothesis Test:

𝐻𝐻0:𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0
𝐻𝐻1: 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≠ 0
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More Things to Explore in the 
Bootstrap World

• Parametric Bootstrap
– Assume population distribution & estimate parameters with 

sample. Then re-sample from estimated population to 
characterize sampling distribution of parameter of interest.

• Other kinds of bootstrap confidence intervals
– Bias-corrected
– Accelerated bootstrap
– Bootstrap t
– Etc., etc., etc.

• Bootstrap confidence intervals in regression
– Simple Linear Regression
– Generalized Linear Models
– Mixed Models

• Comparisons with permutation testing
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Summary and Cautions

• Bootstrapping 
– Powerful tool applicable in a variety of situations

» Quantify Variance
» Hypothesis Testing

• Most useful when:
– Distributions unknown or complex
– Deriving sampling distribution intractable/impractical

• Always remember:
– Use for inference not estimation
– Resample using the same approach that was used to 

generate your sample 
» For hypothesis testing, resample under the null 

hypothesis
– Bootstrap results can only ever be as good as the sample 

upon which they’re based, since you’re using the sample as a 
plug-in estimator for your population. 
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Questions?
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Backup
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The Sampling Distribution is the Basis for 
Statistical Inference

• Known (or assumed) properties of population distributions
– If population has a Normal distribution, sample mean will have a 

normal distribution 
» 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 ~𝑁𝑁 𝜇𝜇, 𝜎𝜎

2

𝑛𝑛
𝑖𝑖𝑖𝑖 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛~𝑁𝑁(𝜇𝜇,𝜎𝜎2)

• Known properties of estimators
– Confidence interval for the mean based on the Central Limit 

Theorem
» 𝑛𝑛 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝜇𝜇 →

𝑑𝑑
𝑁𝑁 0,𝜎𝜎2 , where Var 𝑥𝑥𝑖𝑖 = 𝜎𝜎2 < ∞

• In some cases, these approaches break down
– Don’t know or can’t easily characterize population distribution
– Interested in quantities that don’t have nice properties/easily 

applicable theorems

Most common approaches for estimating the sampling distribution 
of a sample statistic:
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One Sample Hypothesis Testing
Monte Carlo Approach

Hypothesis Test:

𝐻𝐻0:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 20.3 𝑘𝑘𝑘𝑘
𝐻𝐻1:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 20.3 𝑘𝑘𝑘𝑘

Sampling 
distribution for 
sample mean 

under null 
distribution

Sample

Portion of sampling 
distribution “more extreme” 

(according to alternative) than 
observed sample mean

• Calculate p-value by 
determining proportion 
of sampling distribution 
lower than observed 
sample mean

– P-value = 0.1072
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